

MIN / 2021 - 210197

Τo,

Director

Ministry of Environment & Forests

Regional Office, Western Region

Kendriya Parayavaran Bhavan

Link Road No. 3

E - 5 Ravishankar Nagar,

Bhopal – 462 016

Sub: - Six monthly compliance report of environmental clearance over 1143.41 hect. area in Sijahatta - Hinauti Limestone Mine of M/s Prism Johnson Ltd.

Ref.:- Your letter No. J-11015/37/96-IA.II (M) dated 31.12.96.

Dear Sir,

This is reference to the above we are enclosing herewith the six monthly compliance report (period October, 2020 to March, 2021) with necessary enclosures of the environmental clearance granted over 1143.41 Hect. Mining Lease areas of M/s Prism Johnson Limited (Formerly Prism Cement Ltd) Satna (M. P.)

We hope you will find the same in order.

Thanking you.

Yours faithfully, For, Prism Johnson Limited

Mines Manager Prism Cement Limestone Mines

PRISM JOHNSON LIMITED

(Cement Division)

Works: Village Mankahari, P.O.-Bathia, Dist. Satna - 485 111 (M.P.) India T: +91-07672-275301 / 302600 Corres. Add.: 'Rajdeep', Rewa Road, Satna - 485 001 (M.P.) India. T: +91-07672-402726 Registered Office: Prism Johnson Limited, 305, Laxmi Niwas Apartments, Ameerpet. Hyderabad - 500 016, India. w: www.prismjohnson.in, www.cement.prismjohnson.in, E: info@prismjohnson.in

CIN: L26942TG1992PLC014033

For

Environmental Clearance over 1143.41 Ha area in Village -Sijahata -Hinoti Limestone Mine of M/S Prism Johnson Ltd (Period : October, 2020 - March, 2021)

OF

M/s Prism Johnson Limited. (Formerly Prism Cement Limited) Village—Mankahari, P.O.-Bhatila Distt., - Satna (M.P.)

The environmental clearance would be applicable to 1143.41 Ha.	⇔	Initial grant of 1143.41 ha Environment Clearance comprised of mining lease of 791.004 ha + 253.326 ha. + 42.798 ha + 56.282 ha. (PL). Subsequently PL was not converted into ML.
		Later, 791.004 ha + 42.798 ha were amalgamated and after leaving some restricted area, mining lease was granted for an area of 772.067 ha only.772.067 ha ML was granted EC vide MoEF letter No. J-11011/949/2007-IA-II (I) dated 22.09.2008.
		Now the said EC 1996 pertains to only 253.326 ha ML area out of 1143.41 ha for compliances. The copy of the approval letter is enclosed as Annexure 1

Production Plan for last five years for 253.326 ha.								
SI no.	FY	Production as per SoM	Production as per EC limit	Actual production (MT)	limits.			
1.	2015-16	3000000	2175000	2174591	СU			
2.	2016-17	3000000	2175000	2166122	within			
3.	2017-18	3000000	2175000	2174813				
4.	2018-19	3000000	2175000	2173643	ction			
5.	2019-20	3000000	2175000	2174244	Production			
6.	2020-21	2175000	2175000	2174769	٦ ۲			

	SI no.	FY	Waste rock as per SoM	Soil as per SoM	Actual W/R	Actual Soil	
			Cu M	Cu M	Cu M	Cu M	
	1.	2015-16	293600	103500	210638	130334	
	2.	2016-17	76575	343506	38102	343373	
	3.	2017-18	1596848	624564	1854829	83094	
	4.	2018-19	162891	1904952	829504	16837	
	5.	2019-20	2819104	140545	103409	95661	
	6.	2020-21	2749264	57454	1388869	0	
•	coil and O. ed dump si	•	hould be stacked in	concurrent backf the backfilled are Soil and OB c	illing of the mined ou a for carrying out plan dumps are maintain	course of mining is t area. Top soil is spi ntation. ed separately at ea ning approved by th	read o armark

Bureau of Mines.

	Soil Dump Located in Area 253.326 ha
	Verburden Dump Located in Area 253.326 haTop soil generated is stored and later spread over backfilled area which is used for plantation.All dumps are temporary in nature and placed within excavated area which will be used for backfilling in future. The relevant pages of the approved mining scheme is enclosed as Annexure No. 4
Garland drains should be constructed downstream to the existing nala system to safeguard the mine faces.	Garland drain having dimension of cumulative length of 1.2 Km, a width of 2.0 to 3 meters and depth of 0.75 to 1.2 meter already exists. The drain system is continuously developed to safe guard the mine faces.
	Catch drains around the old OB dumps have been constructed. Picture of the same is displayed.

Garland Drain

Settling Pond

The levels of SPM should not exceed 500 µg/m³ at any station within the leasehold. Emission of SO₂, NOx and CO should be maintained below the levels prescribed by the competent authority. Control measures suggested in the EMP in this regard should

be strictly implemented. The dust pollution in the limestone mine needs to be further controlled by incorporating additional mitigative measures at the sources itself.	October 2020 to March 2021 are given in Annexure 5 .
	Pollution control measures are strictly implemented. Water spraying is done on the entire haul roads from water tanker.
	Atomized water spraying arrangement exists at the crusher hopper.
	Water spraying System in Crusher Hopper
	Environment Protection Measures are mentioned in EMP, salient features are as mentioned below:-
	POLLUTION CONTROL MEASURES
	The mining operations are not anticipated to raise the concentration of the pollutants any more. However, following measures have been/would be adopted to mitigate the SPM levels in ambient air:
	i) Measures to prevent Generation and Dispersal of Dust
	Dust particles, which are normally generated during mining operations become air borne, thus leading to increase in SPM level in the ambient air. Another source of dust generation is the transport of the material by trucks. Adequate control measures are therefore taken by PCL during both mining operations as well as transportation/dumping of Limestone/OB which shall be extended to proposed additional mining area also :
	• Dust suppression systems (water spray) are/would be adopted at loading faces. –fully implements and complied.
	• Dust generation is/would be reduced by using sharp tooth for shovels. –fully implements and complied
	• Dust suppression system. (Water spraying) have been/would be adopted on roads which are used for transportation and plying of vehicles fully implements and complied
	ii) Measures to Control Air Pollution due to Airborne Dust
	In addition to control measures during mining and transport

operations, following steps have been/would be taken to prevent air pollution duo to air borne dust: More trees have been/would be planted around the dust generation points-fully implemented/complied. More trees have been/would be planted on both sides of the roads along slopes etc. ----fully implemented/complied. Afforestation around the mine to filter out the dust and preventing it from reaching the residential areas has been / would be undertaken----fully implemented/complied. Dust masks have been provided to workers, engaged at • dust generation points like loading, dumping points etc. ---fully implemented/complied. Afforestation already mined out areas would be done as • per schedule with minimum gap between excavation and afforestation to fix the dust and prevent it getting airborne ----fully implemented/complied..

Minimum, Maximum & Average Ambient Air Quality Monitoring Report

S. No.	Date		L	ocation (1)				L	ocation (2)		
S. NO.	Date	PM 2.5	PM10	SO2	NOX	CO	PM 2.5	PM10	SO2	NOX	CO
		ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3
1	08.10.20	40.36	64.56	28.62	31.46	BDL	38.46	70.26	34.89	41.37	BDL
2	22.10.20	43.48	58.32	32.64	37.85	BDL	36.48	68.54	26.16	46.58	BDL
3	08.11.20	37.35	66.87	33.14	43.92	BDL	38.46	59.93	41.66	40.45	BDL
4	22.11.20	39.72	67.36	38.19	41.6	BDL	36.46	56.3	33.14	39.29	BDL
5	10.12.20	39.13	70.74	36.45	40.45	BDL	33.94	68.87	34.72	41.6	BDL
6	24.12.20	36	66.59	33.14	36.98	BDL	33.3	66.95	31.59	34.16	BDL
7	09.01.21	36.45	70.64	32.4	39.29	BDL	35	73.3	30.93	36.4	BDL
8	23.01.21	34.11	71.45	36.45	42.47	BDL	32.71	71.85	31.24	38.43	BDL
9	07.02.21	35.24	70.3	34.02	37.21	BDL	32.37	69.25	33.42	34.98	BDL
10	22.02.21	36.72	69.16	35.35	38.24	BDL	29.49	66.17	32.4	36.98	BDL
11	06.03.21	34.55	65.56	34.02	39.29	BDL	33.49	65.04	32.4	36.4	BDL
12	20.03.21	32.34	70.06	35.1	40.45	BDL	31.76	62.47	33.14	37.21	BDL
13	Minimum	32.34	58.32	28.62	31.46	BDL	29.49	56.3	26.16	34.16	BDL
14	Maximum	43.48	71.45	38.19	43.92	BDL	38.46	73.3	41.66	46.58	BDL
15	Average	37.23357	67.24143	34.02357	38.89929	BDL	34.27643	66.32357	33.10786	38.89929	BDL

Date		Lo	cation (3)					Location (4)			Wind
Date	PM 2.5	PM10	SO2	NOX	CO	PM 2.5	PM10	SO2	NOX	CO	Direction
	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	From
08.10.20	42.38	59.62	36.48	39.32	BDL	48.64	54.23	38.42	40.52	BDL	NE
22.10.20	34.65	54.87	40.52	42.45	BDL	42.22	60.45	41.56	48.32	BDL	SE
08.11.20	29.26	54.45	22.09	26.96	BDL	30.7	57.9	24.3	29.12	BDL	SW
22.11.20	28.92	55.83	21.26	25	BDL	32.64	55.69	26.51	28.76	BDL	SE
10.12.20	29.78	57.09	24.3	29.12	BDL	31.96	63.39	27.01	30.05	BDL	SE
24.12.20	30.7	60.31	22.28	26.96	BDL	33.88	64.82	24.3	28.31	BDL	SW
09.01.21	27.82	54.14	26.33	26.29	BDL	29.19	29.81	28.14	29.42	BDL	SE
23.01.21	28.7	58.19	27.77	27.5	BDL	29.61	58.76	29.7	30.05	BDL	SE
07.02.21	27.97	56.98	27.01	27.5	BDL	30.97	61.66	29.7	30.35	BDL	NE
22.02.21	25.21	58.31	28.14	29.12	BDL	29.19	61.23	30.39	31.02	BDL	SE
06.03.21	26.1	59.09	26.73	33.71	BDL	28.38	62.07	28.14	34.16	BDL	SE
20.03.21	25.32	59.37	24.3	28.31	BDL	26.93	65.73	27.01	30.35	BDL	SW
Minimum	25.21	54.14	21.26	25	BDL	26.93	29.81	24.3	28.31	BDL	
Maximum	42.38	60.31	40.52	42.45	BDL	48.64	65.73	41.56	48.32	BDL	
Average	30.31429	57.33571	27.785	30.69214	BDL	33.56286	56.52	30.07429	33.36143	BDL	

LOCATION (1) - SW (BP No. 18) LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Hinouti Village

0		JND WATER QUALITY REPO		Data di	
SI No	Tests	Results Mines Site office Hinauti Sijahata	Results Sijahata Village Bore well	Detection Range	
1	Colour	<5.0	<5	5-100	
2	Odour	Agreeable	Agreeable	Qualitative	
3	Taste	Agreeable	Agreeable	Qualitative	
4	Turbidity as (NTU)	BDL	BDL	1.0-100	
5	рН	7.24	7.32	2.0-13.9	
6	Total Dissolved Solid as TDS(mg/l)	492.0	358.0	10-1000	
7	Alkalinity (mg/l)	134.00	128.0	10-500	
8	Total Hardness as CaCO₃ (mg/l)	211.20	263.02	10-1000	
9	Calcium as Ca (mg/l)	59.38	61.94	10-1500	
10	Magnesium as Mg (mg/l)	15.16	26.12	5-1500	
11	Chloride as Cl(mg/l)	41.60	58.40	10-1000	
12	Fluoride as F(mg/I)	0.40	0.50	0.02-10	
13	Sulphate as SO₄(mg/l)	54.20	120.0	1.0-200	
14	Nitrate Nitrogen as NO₃(mg/l)	11.64	17.24	5.0-100	
15	Manganese as Mn(mg/I)	BDL	BDL	0.05-5	
16	Zinc as Zn (mg/l)	BDL	0.24	0.02-100	
17	Lead As Pb (mg/l)	BDL	BDL	0.005-1	
18	Cadmium as Cd (mg/l)	BDL	BDL	0.002-2	
19	Nickel as Ni (mg/l)	BDL	BDL	0.001-5	
20	Arsenic as As(mg/l)	BDL	BDL	0.008-2	
21	Total Chromium as Cr (mg/l)	BDL	BDL	0.04-10	
22	Mercury as Hg (mg/l)	BDL	BDL	0.001-1	
23	Copper as Cu(mg/l)	BDL	BDL	0.04-5	
24	Boron as B (mg/l)	0.16	0.16	0.02-2	
25	Aluminum as Al (mg/l)	BDL	BDL	1.0-100	
26	Free residual Chlorine (mg/l)	BDL	BDL	0.1-5	
27	Sulphide as H₂s (mg/l)	BDL	BDL	0.04-10	
28	lodide as I (mg/I)	BDL	BDL	0.1-10	
29	Iron as Fe(mg/l)	0.22	0.27	0.05-100	
30	Total Coliforms (MPN/100 ml)	BDL	BDL	1.8	
31	E Coli (Nos/100 ml)	BDL	BDL	1.8	
quality of effluents finally discharged should rm to the standards prescribed under GSRNo industrial wastewater is generated as the cement plant operated on dry process.E) dated 19.5.1993 and 31.12.1993.For domestic wastewater, there is a sewage treatment plant of state-of-art technology. It has the capacity to treat domes wastewater of 600 KLPD.					

Contaminated water generated due to washing of equipment is
passed though grease and oil trap tank having separation chambers
and pumping arrangement. For separation of oil and grease particles
from water, prime mover has been provided. The oil and grease is
skimmed and kept in sealed barrels for further disposal to authorized
vendors.
The strained out water left in the tank is stored in tanks, and is re-
used for washing of HEMM.
Detailed Report of treated effluent attached as -Annexure No- 10

Detailed Report of treated effluent attached as -Annexure No- 10.

Regular monitoring of air, water and noise should be made in and around the core-zone. Recorded data should be furnished to this Ministry (Regional Office, Bhopal) and the State Pollution Control Board six monthly. Noise levels should not exceed the limit of 85 dB. Ear plugs/ear muffs, may be provided to the workers engaged in the noisy atmosphere. Regular monitoring of ambient air quality, water quality and noise level are done at different locations in and around the core zone. Recorded data is submitted to relevant authorities as per schedule. Monitoring reports of the ambient air quality, water quality and noise level are given in **Annexure 5**, **10** and **7 respectively**. The noise level is well within acceptable limits.

S. No.	Date	Locat	tion (1)	Location (2)		
		Noise level Noise leve in dB(A) in dB(A)		Noise level in dB(A)	Noise level in dB(A)	
		(Day Time)	(Night Time)	(Day Time)	(Night Time)	
1	16.10.2020	58.8	52.1	55.87	51.2	
2	12.11.2020	59.6	52.92	56.47	53.5	
3	25.12.2020	60.57	52.52	62.3	54.02	
4	19.01.2021	68.25	53.25	65.1	52.22	
5	16.02.2021	64.3	55.37	60.72	54.32	
6	19.03.2021	60.87	55.1	58.22	52.3	
7	Minimum	58.8	52.1	55.87	51.2	
8	Maximum	68.25	55.37	58.37	49.97	
9	Average	62.43	53.59125	59.115	52.34125	

Noise Monitoring Report

S. No.	Date	Loca	tion (3)	Location (4)		
		Noise level in dB(A)	Noise level in dB(A)	Noise level in dB(A)	Noise level in dB(A)	
		(Day Time)	(Night Time)	(Day Time)	(Night Time)	
1	19.10.2020	54.4	50.3	52.3	46	
2	13.11.2020	53.67	48.52	53.7	46.21	
3	26.12.2020	54.5	47.37	58.72	52.07	
4	20.01.2021	58.02	49.37	59.35	50.55	
5	17.02.2021	54.82	45.5	58.15	47.57	
6	20.03.2021	54.67	48.65	57.65	50.8	
7	Minimum	53.67	45.5	52.3	46	
8	Maximum	57.2	48.4	54.8	48.25	
9	Average	55.11875	47.95125	55.87125	48.43125	

LOCATION (1) - SW (BP No. 18)

LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area

LOCATION (3) - Near Mankahari Village

LOCATION (4) - Near Hinouti Village

		Ear plugs, dust masks are provided to workmen working in noisy atmosphere.
--	--	--

Total PPE's October 2020 to M	larch 2021	
Material	Qty.	Amount in Rs.
Dust Mask	651	12359
Goggle Safety Glass PVC,	45	1890
Hand Gloves	337	7717
Helmet Industrial Safety	134	9662
Jacket fluorescent High Visibility Wear	78	9906
Plug Ear muff	-	-
Safety Shoes	315	225225
TOTAL	1560	266759

The anti-pollution measures with regard to environment quality prescribed in the EMP should be implemented schedule in a time bound programme.

The anti-pollution measures with regard to environment quality prescribed in the EMP have already been implemented.

Water spraying is done on the entire haul roads round the clock by water tanker.

Water spraying arrangement has been made at the crusher hopper.

Permanent sprinkler arrangement along the haul road area

EMP Compliance Report is summarized below:

A] POLLUTION CONTROL MEASURES

- *i) Measures to prevent Generation and Dispersal of Dust*
 - Dust suppression systems (water spray) are/would be adopted at loading faces-fully implemented and complied.
 - Dust generation Is/would be reduced by using sharp tooth for shovels -fully implemented and complied.

Dust suppression system (Water spraying) have been/would be adopted on roads which are used for transportation and plying of vehicles -fully implemented and complied.

ii) Measures to Control Air Pollution due to Airborne Dust

In addition to control measures during mining and transport operations, following steps have been/would be taken to prevent air pollution due to air borne dust: -fully implemented and complied.

- □ More trees have been/would be planted around the dust generation points -fully implemented/complied.
- □ More trees have been/would be planted on both sides of the roads along slopes etc. -fully implemented/complied.
- Afforestation around the mine to filter out the dust and preventing it from reaching the residential areas has been / would be undertaken-fully implemented/complied.
- Dust masks have been provided to workers, engaged at dust generation points like loading, dumping points etc. -fully implemented/complied.
- □ Afforestation already mined out areas would be done as per schedule with minimum gap between excavation and afforestation to fix the dust and prevent it getting airborne -fully implemented/complied.

iii) Surface Water Pollution Control Measures

No surface water bodies are likely to get adversely affected by mining operations. No contamination of surface water source is anticipated as there are no toxic or chemical materials either in the mineral or the top soil cover.

Rain water which is accumulated shall be guided down to suitable drains after passing through reservoirs used as settling tanks--fully implemented/complied.

iv) Ground Water Pollution Control Measures

□ The ground water table in the mine area is not likely to be affected. No control measures to prevent ground water have, therefore been recommended. -Agreed

v) Noise Pollution Control Measures

The noise level monitoring carried out in area has indicated the present noise levels are generally below 65(average) dB(A) which also includes impact of noise of deployment of various machines for excavation, transport, dumping, other auxiliary operations and plant operation. The following measures have been/would be taken to keep the noise levels well below the limits:

- □ A thick green belt has been/would be provided around the periphery of the mine to screen the noise. -fully implemented/complied.
- Trees are/would be planted on both sides of roads used for transportation vehicles. -fully implemented/complied.
- Proper maintenance of noise generating machinery including the transport vehicles. -fully implemented/complied.
- Provision of silencers to modulate the noise generated by machines. -fully implemented/complied.
- Provision of protective device like ear muffs/plugs. -fully implemented/complied.
- Provision of sound Insulated chambers for the workers deployed on machines producing higher level of noise like bulldozers, drills etc., --fully implemented/complied.
- Confining the noise levels by isolating the source of noise. -fully implemented/complied..
- **D** Reducing the exposure time of workers to higher noise levels -fully implemented/complied.

vi) Measures To Reduce Ground Vibrations

- Peak particle velocity or Ground Vibrations for safety of nearby structures and residential buildings is well within 12.5mm/sec. -fully implemented/complied.
- For safe permissible charges per delay initially guidance was taken from the empirical propagation equation V=313.22(D/Q1/2).1.67 but now it is firmed up by monitoring studies during the development stage for existing mines--fully implemented/complied.
- Use of short delay detonators and non-electric detonators -fully implemented/complied.
- □ To contain fly rocks, stemming column shall not be less than burden of hole. -fully implemented/complied.
- As per the practice, each blast is carefully planned, checked, executed and monitored. Charge sheets and blasting data is recorded. -fully implemented/complied.
- Electric detonators are used. Covering the detonating fuse Blasting is carried out in daylight hours only. -fully implemented/complied.
- Care is taken to ensure that the effective burden is not excessive -fully implemented/complied.

- □ Number of blasts per delay are kept to the minimum. -fully implemented/complied.
- □ To adopt multi row blasting & "V" pattern of firing. -fully implemented/complied.

B] MEASURES TO IMPROVE SOCIO-ECONOMIC CONDITIONS

After Commissioning of Existing Project

- 2.5 km WBM road to connect the villages -fully implemented/complied.
- Repair of existing connecting roads in villages -fully implemented/complied.
- Repair of drainage system in Hinouti village -fully implemented/complied.
- PCL has constructed 1.6 km long & 10 m wide WBM road connecting plant to State Highway. Construction cost was Rs. 12.0 lacs and annual maintenance cost is Rs. 3.0 lacs per annum. -fully implemented/complied. The road is now fully concreted.
- □ PCL is contributing an amount of Rs. 13000/- per annum towards sports in the surrounding villages. -fully implemented/complied.
- Provide drinking water to villagers in any social & religious gathering, -fully implemented/complied..

Proposed Welfare Measures

In addition to welfare measures carried out, PCL shall continue the efforts to improve the socio-economic status of the local habitants, PCL shall review the various welfare schemes going on in the area from time to time and take decisions of modification/addition of welfare schemes as per the requirement of local habitants,

Medical facility

- □ A dispensary has been provided in the township area for the employees and same service is extended to local populations. A mobile clinic for rural medical health care has already been provided which visit the nearby villages twice every week. -fully implemented/complied.
- □ Medical Centre is well equipped with all types of emergency medical equipment's e.g. emergency medicines, oxygen cylinder, electrically and manually operated suction pumps, statures etc. one well equipped ambulance containing arrangements for carrying 3 patients at a time is also provided to deal with emergencies. -fully implemented/complied.
- Medical Centre is provided full time medical officer, three nursing assistants, three helpers, & other staff. Special arrangements have been made for regular visits of child specialists and gynecologist from Satna. -fully implemented/complied.
- PCL is planning to provide pathological facility for testing of blood and urine at Medical Centre in coming year. -fully implemented/complied.

Bank & Police Station

PCL-has-provided land & building and requisite facility to -a Nationalize (Bank & Police Station at village Mankahari. -fully implemented/complied.

Employment: most of the workers belong to the local area. In addition to this most of the local people are engaged in indirect employment like casual labour, dhaba, supply of local items, local mechanical works- -fully implemented/complied..

Communication

PCL has also provided land & building to telephone exchange at village Mankahari. With the establishment of Telephone Exchange, other business opportunity for local population is widened. -fully implemented and complied.

A green belt around the dust generation points and the lease area should be provided. The density of the trees should be at least 1600 sapling/ha. Mixed species of sapling should be selected for enhancing the bio diversity programme in the lease hold area as mentioned in EMP and supplementary note should be implemented phase wise as envisaged. Extensive plantation has been taken up covering the areas on either side of the crusher ramp, haul roads, sides of reservoir, dump slopes and in non-mineralized areas etc. as well as some part along the lease boundary. Plantation is going on in the backfilled areas cumulative plantation(Nos.) till March 2021 is **105,468** covering 36.41 Ha

Plantation 253.326 Ha for the last 8 years

SI. No.	Year	Total No. of Plants
1	2013-14	2500
2	2014-15	2500
3	2015-16	9000
4	2016-17	10000
5	2017-18	6000
6	2018-19	6000
7	2019-20	9073
8	2020-21	11190

105,468 since inception

 The socio-economic / community development measures including health care need to be augmented. A detailed annual action plan / time bound scheme for the socio-economic development should be submitted to the Ministry within three months.
 A note on Socio economic development action plan has already been submitted to MoEF, Delhi / Bhopal vide our letter no. MIN / 0701 / 990628 dated 03.2.2000.-Annexure no. 09

 The CSR programme is common for PCL. Expenditure made during 2020-21 (Oct to March) for socio - economic / community development has been given in Annexure No. 3.

 Image: the socio-economic development should be submitted to the Ministry within three months.
 Image: the socio-economic development is common for PCL. Expenditure made during 2020-21 (Oct to March) for socio - economic / community development has been given in Annexure No. 3.

Uniform distribution at School Village ,Hinauti			Renovation of Hr. Sec. School at Sijahata				
	<image/>						
Cataract Operatio	n		Т	oilet - Swachha Bh	arat		
<image/>					त् अभि. हित्तोर्त		
	Pickle & Pa	apa	d Making Training				
Mining operations should be carried out in such a manner that inhabitants of the villages Sijhata and Hinouti should not be shifted and adequate measures for socio-economic development be carried out.			 Mining operations are carried out taking utmost care as per Scheme of Mining approved by Indian Bureau of Mines. All blasting operations are carried out as per permissions by the DGMS and guidelines of CMFRI. Report attached as-Annexure no. 8 The habitation of Hinauti and Sijhata villages are not affected. Adequate measures for socio-economic development are carried out as per details in sl no. 9 				
		S EXPENDITURE FY 2020-21					
S.N.	Particula			Estimated Exp. In Lacs	Till Date		
Α.	INFRASTRUCTU	RE	DEVELOPMENT	40.08	31.03.2021		
B.	HEALTH	& H	IYGIENE	32.26	31.03.2021		
С.	EDU	CAT	ΓΙΟΝ	82.73	31.03.2021		
D.	ENVIRONMENT	ГСС	ONSERVATION	106.61	31.03.2021		
E.	WATER CONSERVATION & DRIN		& DRINKING WATER	6.28	31.03.2021		
F.	EMPOWERMENT &	SKI	ILL DEVELOPMENT	24.25	31.03.2021		
G.	PROMOTION OF	SP		16.40	31.03.2021		
H. SOCIAL WELFARE			17.50	31.03.2021			
I. Grand			otal	326.10			
Environmental Management Cell has to be established to carry out functions relating to environmental management action plans. The Head of the Cell should directly report to the Chief Executive.					unctioning effectively,		
Adequate fund provision (capital and recurring expenditure) should be provided for implementation of all safeguards including socio-economic programme as above. The funds should not be diverted for any other purpose (an amount of 1062.0 lakhs earmarked for pollution controlAdequate fund provision has been made for implementation socio-economic programs and environment management and accordingly spent.The fund for pollution controlThe fund for pollution controlThe fund for pollution control					ent management plan		

measures and afforestation). Separate account would be kept for implementation of EMP measures.

to any other purposes.

	FY 202	20-21								
	Heads					(Rs in Lacs)				
		Main	Itenance of APCEs			0.4	-			
			peration & Maintenance, Plar	atation	Etc	10.4	-			
				πατιστι	L10.	300.				
APCE Power Consumption Total (Rs in Lacks)						300.	-			
_	T					011.	U 4			
3	_		ght to stipulate any other uired based on feedback	Ag	reed. The M	inistry may provide, a	as it may see fit,			
	etc. in the interest of env	-		ad	ditional conditi	ons for protection of env	rironment.			
1			ored by the regional office	Eu		n is provided to the o	fficers of Regional			
			Central Pollution Control			shing the requisite				
	Board / the State Pol		n Control Board. The xtend full cooperation to			and all access to the w				
			Office by furnishing the							
	-		monitoring report and all							
-	provide full access to the									
5	-		status vis-à-vis project fically giving the progress	Six	monthly com	pliance report is subm	itted to RO MoEF,			
			afforestation programme,			ective authorities regula	arly. The details are			
			including health care	as	given below:					
			ed for the scrutiny of this fice once in 6 months							
	regularly for regular mor									
			•••	Lease						
	Yea	ır -	Dispatch no.			Date	-			
			MIN / 2010 – 10137			26.07.2010	-			
	201	0	MIN / 2010 – 10246			-				
		_				20.12.2010 20.07.2011	-			
	201	1	MIN / 2011 – 11193B				-			
			MIN / 2011 – 11413			31.12.2011	-			
	2012	2	MIN / 2012 – 12186			20.07.2012	4			
			MIN / 2013 – 13033			15.01.2013	4			
	201	3 -	MIN / 2013 – 13260			18.07.2013	_			
			MIN / 2014 – 14011			10.01.2014	4			
		5	MIN / 2014 – 14202			10.07.2014	1			
	201		MIN / 2015 - 15017			10.01.2015				
	201	MIN / 2015 – 15017					1			
		+	MIN / 2016 – 16226			29.09.2016				
	201	+				29.09.2016 07.02.2017	-			
	201	6 -	MIN / 2016 - 16226				-			
		6 -	MIN / 2016 – 16226 MIN / 2017 – 17052			07.02.2017	-			
	201	6 -	MIN / 2016 – 16226 MIN / 2017 – 17052 MIN / 2017 – 17192			07.02.2017 09.08.2017	-			
	201	6 -	MIN / 2016 - 16226 MIN / 2017 - 17052 MIN / 2017 - 17192 MIN / 2018 - 18071			07.02.2017 09.08.2017 09.03.2018	-			
	201	6 -	MIN / 2016 - 16226 MIN / 2017 - 17052 MIN / 2017 - 17192 MIN / 2018 - 18071 MIN / 2018 - 18209 MIN / 2018 - 19019			07.02.2017 09.08.2017 09.03.2018 16.08.2018 22.01.2019	-			
	201	6 7 8	MIN / 2016 - 16226 MIN / 2017 - 17052 MIN / 2017 - 17192 MIN / 2018 - 18071 MIN / 2018 - 18209 MIN / 2018 - 19019 MIN / 2019 - 19125A			07.02.2017 09.08.2017 09.03.2018 16.08.2018 22.01.2019 01.06.2019	-			
	2011 2011 2011	6 7 8	MIN / 2016 – 16226 MIN / 2017 – 17052 MIN / 2017 – 17192 MIN / 2018 – 18071 MIN / 2018 – 18209 MIN / 2018 – 19019 MIN / 2019 – 19125A MIN / 2019-19277			07.02.2017 09.08.2017 09.03.2018 16.08.2018 22.01.2019 01.06.2019 05.12.2019				
	2011 2011 2011	6 - 7 - 8 - 9 -	MIN / 2016 - 16226 MIN / 2017 - 17052 MIN / 2017 - 17192 MIN / 2018 - 18071 MIN / 2018 - 18209 MIN / 2018 - 19019 MIN / 2019 - 19125A MIN / 2019-19277 MIN / 2020-20112			07.02.2017 09.08.2017 09.03.2018 16.08.2018 22.01.2019 01.06.2019 05.12.2019 01.06.2020				
	201 201 201	6 - 7 - 8 - 9 -	MIN / 2016 – 16226 MIN / 2017 – 17052 MIN / 2017 – 17192 MIN / 2018 – 18071 MIN / 2018 – 18209 MIN / 2018 – 19019 MIN / 2019 – 19125A MIN / 2019-19277			07.02.2017 09.08.2017 09.03.2018 16.08.2018 22.01.2019 01.06.2019 05.12.2019				

253.32.6

भध्य प्रदेश शासन खनिज ताप्झ विभाग 'भंगानव'

इमकि 3-29/95/12/ भोषान, दिनांक

g ffre,

चलेक्तर,

फिला- तलगा (मठाठ)

विषय:- जिला ततना के ग्राम हिनोती, तिजहटा के रकवा 309.608 हेक्टर देस पर लाईन स्टोन खनिज हेतु मेलर्ल फ्रिज्य तीमेट लि. लेटर्भ:- आगका हा-ह. ।। रम/30/रमस्त/9% दिनांड 9.3-95

वेतर्त प्रिज्य लोवेंट लि0 ने जिला ततना के ज़ाम खिनोली - लिजहटा के 309-608 हेक्टर देम पर लाईम स्टोन अनिज के लिये खनिपट्टा आवेदन पत्र इस्तुत किया ।

2. आवेतन पन का परीक्षण करने पर पाया गयाकि मेलर्स प्रिच्म लोगेट लिगि. प्यारा आवेदिल 309.608 हेरटर देवमें 56.282 हेक्टर देव के का नया देन हे जो कि आवेदक को पूर्वेक्षण अनुवादित में स्वीकृत नहीं था जतः जान वर्ध वनिव | चिनियमन वर्ध विकास] अधिनियम 1957 की थारा 522 हे के अन्तर्गत कता देव जोपूर्वेक्षण में स्वीकृत न हो वनिवट्टे में स्वीकृत नहीं किया जा सकता कता देव जोपूर्वेक्षण में स्वीकृत न हो वनिवट्टे में स्वीकृत नहीं किया जा सकता जतः आवेदक को ज़ान हिनोत्ती का 240.746 हेक्टर वर्ध तिकहटा का 12.580 हेक्टर कुन 253.526 हेक्टर देव खनिवट्टे में स्वीकृत है। उपलब्ध पाया गया 1

3. आवेदित वनिन अनुतूची कि का बनिन होने ते जान क्यं जनिन श्रंचिनियमन क्यं विकास अधिनियम 1957 की पारा 5818 के अनुतार स्वीकृति के पूर्व केन्द्रीय शासन ते उनके वत्र कुवांक 4/97/95/क्य-4 दिनांक 8.8.95 व्यारा उनका अनुमोदन प्राप्त किया गया ।

4- अतः राज्य भारतन झारा आवेदक को नीचे दर्गाई गर्ती पर खनिषट्टा 'त्वीकृत किया जाता है :--

३। ३ अप्लेलक का नाम

मेलर्त फिज्म सीमेंट लिमिटेड

11211

121 त्वीकृत देव वा जिवरण - गाम हिनोती 240.746 हेक्टर

ग्राम तिजहटा 12.580 हेक्टर

हुन - 253. 326 ेक्टर

33 अनिज कर नरम

1. S. 18

लाईम स्टोन

14 | स्वीवृत्ति की अवस्थि 20वर्ष |वीत वर्ष | विना नवकरण कण्डिका के |

[5] अविवक केंगी ट्यारा स्थानीय देनीय विकास काई हेः स्वेच्छिक योगदान दिये जाने के तबंध में अपने पत्र दिनांक 22.7.96 से दी गई अडरटेकिंग के अनुसार जिस प्रकार अच्य बद्देया रियों के लिया जावेगा, आवेदक केंग्नी को देव होगा।

[6] रायल्टी /डेडरेंट अधिनियम अपुरताधित वर ते ।

171 पिथीडोनाईट तब आति आवायक हो तो किया जाते ।

18 | जूनापत्थर (मार्बन) डोनोवाईट की स्थिति मे -

वानि रियायत नियमावली 1960 के जन्तर्गत निर्धारित अनुबंध यत्र 'हे' काह तात में गई क्रमांक 21 के बाद मध-मुद्देग शासन, नेतर्गिक ताधन विभाग के कुक, 8814-6384/12 दिनांक 24-11-1962 व्यारा तूथित गई 'ह

21 'ग' जोडी जावे ।

११ आबेदक खनन किये गये चुनावत्थत का उबयोग तथा वित ती मेंट तथंत्र में करेगा। 5/- यदि आवेदक को उपरोक्त गौँ मान्य हो तो नियमानुतार जनानत रात्रि जवा कराकर आदेश प्राप्त होने के 6 माह के श्रीतर अनुबंध का निष्यादन किया जाकर अनुबंध की एक प्रति मेजी जावे ।

कृत्या अनुबंध निष्यादन के पूर्व यह तुर्रनारियत कर लेकि आबेदक के उपर किली प्रकार का खनिज राजस्य की राशि बकाया तो नहीं है ।

> मध्यप्रदेश के राज्यपाल के नाम ते लक्ष आदेशभुत्तार,

ह स.बे. त्रिबेल ? अबर ताचिब अध्यमुदेश शासन, खनिज लाधन विधाग

0 . 3e a

Sel.

1000 3-29/95/12/1 मोपाल, दिवाक 3]9/96 Finfinftr:-818

31 तथिब, भारत तरकार, आन मंत्रालय, शास्त्री अवन नई दिल्ली। 32 तैवालक, भौगिको तथा खनिकर्म, राष्य्रर।

a of the fit which is the second second states the second second second second second second second second second

service of the service of a service of a service of a service of the service of t

13] डायरेक्टर जनरत आंक माइन्स तेच्टी धनवात निवारने 14] कन्द्रीलर जनरत इण्डियन ब्युरों आक माजन्त नाग्तुर । 15] केनीय बान निर्वत्रक वारतीय जान व्युरों जवलपुर । 16] केनी प्रजन निर्वत्रक वारतीय जान व्युरों जवलपुर । 16] केनी प्रिज्य तीवेंट लि. राधेन्द्र नगर ततनां को ओर त्यनार्थ को जावायककार्यवानों केट्र क्रोफिट्न।

I T. A. Take HET ANI

गटवपुदेश आतन, बनिज तारन तंबमाग

श्रीवारतव

11311

कार्यालय कलेक्टर (खनिज–शाखा) जिला, सतना (म.प्र.)

E-mail modgmsat@mp.gov.in

सतना दिनांक 23111906

पत्र क्रमांक 23.3/खनिज/2016

प्रति,

मेसर्स प्रिज्म सीमेंट लिमि0, तहसील रामपुर बघेलान जिला–सतना (म0प्र0)

विषय :-- खनिपट्टा ग्राम हिनौती, सिजहटा तहसील रामपुर बघेलान, जिला सतना के रकबा 253.326 हेक्टेयर क्षेत्र पर खनिज चूनापत्थर खनिपट्टा में समय वृद्धि।

संदर्भ :-- आपका आवेदन पत्र दिनांक 22.01.2016 कार्यालयीन पत्र पृ0 पत्र क्रमांक 1750 / खनिज / 2015 दिनांक 26.10.2015 ।

---00----

विषयांतर्गत आपके पक्ष में जिला सतना अंतर्गत तहसील रामपुर बघेलान के ग्राम हिनौती, . सिजहटा में रकबा 253.326 हे0 पर चूनापत्थर खनिपट्टा अवधि 28.09.1996 से 27.09.2016 तक स्वीकृत है। खान एवं खनिज (विकास तथा विनियमन) अधिनियम 1957 में हुए संशोधन 2015 व राज्य शासन के पत्र दिनांक 12.03.2015 के पालन में मूल स्वीकृति दिनांक से 50 वर्ष अथवा कैप्टिव माइंस हेतु 31.03.2030 समय वृद्धि का प्रावधान किया गया है। उक्त खनिपट्टे का अनुबंध निष्पादन 28.09.1996 को किया गया था जिसका एम.एम.डी.आर. 2015 के अंतर्गत अवधि 27.09.2046 तक प्रस्तावित है एवं अनुबंध निष्पादन की कार्यवाही प्रचलन में है।

उपरोक्त बावत् आपको सूचित किया जाता है कि संशोधित खनिज नियम 2015 व म0प्र0 शासन खनिज साधन विभाग भोपाल के पत्र दिनांक 12.03.2015 व चेकलिस्ट अनुसार माईनिंग प्लान / माईनिंग स्कीम व अन्य समस्त आवश्यक औपचारिकताऐ पूर्ति करावे, जिससे शासन आदेशानुसार आवश्यक कार्यवाही की जा सके।

Anul

िखनि अधिकारी^{23/01}∕16 कृते कलेक्टर जिला–सतना (म0प्र0)

रजिस्टर्ड पार्सल द्वारा

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES O/O THE REGIONAL CONTROLLER OF MINES

जबलपुर, दिनांक : 23/03/2018

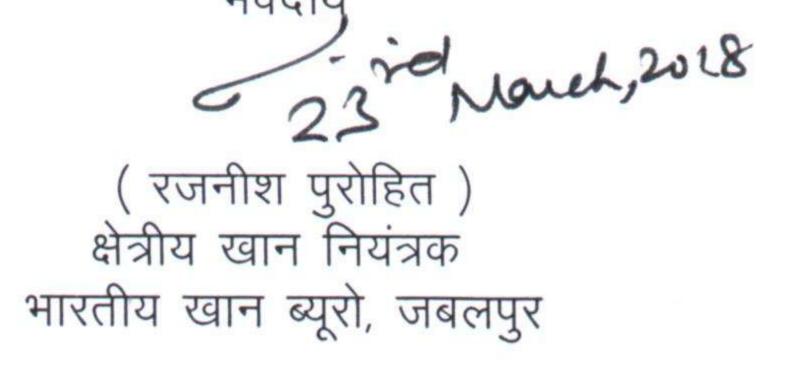
भारत सरकार खान मंत्रालय भारतीय खान ब्यूरो क्षेत्रीय खान नियंत्रक का कार्यालय

फा0 सं0 - MP/Satna/Limestone/MPLN /MOD-81/2017-18

सेवा में, मेo प्रिज्म सीमेंट लिमिटेड, राजदीप, रीवा रोड, सतना जिला– सतना (म0प्र0) 485001

विषयः— म०प्र० राज्य के **सतना** जिले में स्थित आपकी **प्रिज्म सीमेंट (ग्राम— हिनैाती एवं सिजहटा)** लाइमस्टोन खान (क्षेत्र 253.326 हे0) के एमसीआर—2016 के नियम 17(3) के अंतर्गत जमा किए गए अनुमोदित माइनिंग प्लान के लिए प्रस्तुत संशोधन का अनुमोदन।

INTER STATE ACT


संदर्भ :—1) आपके द्वारा जमा किये गये प्रक्रिया शुल्क की रसीद संख्या **J/661, दि0 09 / 02 / 2018,** आपका / क्यू0पी0 का पत्र, दि0 **05 / 02 / 2018** एवं **15 / 03 / 2018** । 2) इस कार्यालय का समसंख्यक पत्र दि0— **08 / 03 / 2018** ।

महोदय,

In exercise of the powers conferred by the Clause (b) of Sub-section (2) of Section 5 of Mines and Minerals (Development and Regulation) Amendment Act, 2015 read with Government of India Order no. S.O.1857(E),dated 18/05/2016, I hereby approve the above said Modification in approved Mining Plan including Progressive Mine Closure Plan submitted under Rule 17(3) of Minerals (Other than Atomic and Hydrocarbons Energy Minerals) Concession Rules, 2016. This approval is subject to the following conditions:

- 1 The Modification in approved Mining Plan is approved without prejudice to any other law applicable to the mine area from time to time whether made by the Central Government, State Government or any other authority and without prejudice to any order or direction from any court of competent jurisdiction.
- 2 The proposals shown on the plates and /or given in the document is based on the lease map /sketch submitted by the applicant/ lessee and is applicable from the date of approval.
- 3 It is clarified that the approval of aforesaid Mining Plan does not in any way imply the approval of the Government in terms of any other provision of Mines & Minerals (Development & Regulation) Amendment Act, 2015, or the Minerals (Other than Atomic and Hydro Carbons Energy Minerals) Concession Rules, 2016 and any other laws including Forest (Conservation) Act, 1980, Environment (Protection) Act, 1986 or the rules made there under, Mines Act, 1952 and Rule & Regulations made there under.
- 4 Indian Bureau of mines has not undertaken verification of the mining lease boundary on the ground and does not undertake any responsibility regarding correctness of the boundaries of the leasehold shown on the ground with reference to lease map & other plans furnished by the applicant / lessee.
- 5 At any stage, if it is observed that the information furnished, data incorporated in the document are incorrect or misrepresent facts, the approval of the document shall be revoked with immediate effect.
- 6 The Financial Assurance submitted by you for Rs. 6,83,84,100/- (Rs. Six Crore Eighty Three Lakh Eighty Four Thousand One Hundred only) is valid up to 31/03/2021 and next Financial Assurance shall be submitted on or before 31/03/2021.
- 7 This approval is restricted in respect of proposals given in the document for the period from 2018-19 to 2020-21 with validity up to 31/03/2021, subject to all other statutory clearances.
- 8 If the approval conflicts with any other law or court order/direction under any statute, it shall be revoked immediately.
- 9 The modification in approved mining plan is approved subject to extension of period of mining lease as per Mines and Minerals (Development and Regulation) Amendment Act 2015.
- 10 This approval is restricted to Major Mineral only and any reflection of minor mineral in the document is under purview of State Government.
- 11 As per Madhya Pradesh State Government's order dated 10/08/2011 if there is enhancement of production proposed from that in the approved scheme of mining under such circumstances additional stamp duty has to be paid by the lessee for the enhances quantum of production and also a supplementary agreement has to be made by the lessee.

संलग्नः-अनुमोदित संशोधित माइनिंग प्लान की एक प्रति के साथ।

PRISM JOHNSON LIMITED CSR ACTIVITIES EXPENSE SUMMARY FY 2020-21 (01.04.2020 to 31.03.2021)

(1)	(2)	(3)	(4)	(5)		(6)
				Location of th	ne project.	Amount
SI. No	Name of the Project	Item from the list of activities in schedule VII to the Act.	Loc al are a (Ye s/ No)	State.	District.	spent on the projects or programs (Rs. In Lacs)
А.	INFRASTRUCTURE DEVELOPMENT (Rural Infrastructure Development Schedule VII (X))					
1	Construction of WBM road at Adivasi Basti Chulhi villages (1.6 KM)		Yes	Madhya Pradesh	Satna	5.59
2	WBM road Construction Kulhadi (3 KM)	Rural Infrastructure Development	Yes	Madhya Pradesh	Satna	10.77
3	Construction of concrete wall for protection of River Bank along stair case near Jabla Baba Hinauti	Schedule VII (X)	Yes	Madhya Pradesh	Satna	8.00
4	Construction of bus shelter at Majhiyar		Yes	Madhya Pradesh	Satna	3.21

5	Construction of bus shelter at Chormari		Yes	Madhya Pradesh	Satna	2.82
6	Renovation of Community Centre at Nagod		Yes	Madhya Pradesh	Satna	4.16
7	Renovation of Community Centre at Majhgawan with providing of chairs		Yes	Madhya Pradesh	Satna	10.36
	SUB TOTAL					44.91
в.	HEALTH & HYGIENE (Health & Hygiene Schedule VII (i))					
1	Free consultation & medicines distribution from PCL Medical centre Out door patient to nearby villagers (Attended 12530 Patients)	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	3.77
2	Organisation eye Camp for cataract patients from nearby villages (20 Nos.)	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	1.90
3	24 hrs. ambulance facility will be provided to nearby villagers free of cost. (Attended 690 Patients)	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	5.50
4	Construction of ODF Toilets at Village Majhiyar (10 no's)	Health &	Yes	Madhya Pradesh	Satna	2.19
5	Construction of ODF Toilets at Village Malgaon (10 no's)	Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	2.06
6	Construction of ODF Toilets at Village Narsinghpur (10 no's)		Yes	Madhya	Satna	2.25

				Pradesh		
7	Construction of ODF Toilets at Village Katra Narsinghpur (10 no's)		Yes	Madhya Pradesh	Satna	2.32
8	Operation & Maintenance of Sulabh Complex at Mahurachh Turning (12 months)	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	5.42
9	Financial assistance to Mr. Ambar Tiwari Cancer Patient, for treatment	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	1.00
10	Financial Assistance to Mr. Ramgopal Prajapati for cancer treatment	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	0.50
11	Financial Assistance to Mr. Rajeev Jain, Kidney patient from Ashoknagar on 24.11.2020	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	1.00
12	Providing nutritional food to 133 Children at Rampur Baghelan Block in association with Women & Child Development Program	Eradicating Malnutrition Schedule VII (i)	Yes	Madhya Pradesh	Satna	0.67
13	Repairing and white wash of Primary health Centre at Sijahata (2000 sqft)	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	1.32
14	Repairing and white Veterinary health Centre at Sijahata	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	0.18

15	Renovation of Ayurvedic Hospital Chormari	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	4.39
	SUB TOTAL					34.47
с.	WATER CONSERVATION & DRINKING WATER (Safe Drinking Water Schedule VII (i))					
1	Providing water Tankers for drinking purpose as required (Provided 270 tankers)		Yes	Madhya Pradesh	Satna	2.43
2	Installation of new Hand pump with bore well at Chormari (01 Nos)		Yes	Madhya Pradesh	Satna	0.69
3	Installation of new Hand pump with bore well Majhiyar (01 Nos)	Safe Drinking - Water	Yes	Madhya Pradesh	Satna	0.70
4	Installation of new Hand pump with bore well at Chulhi village (01 Nos)	Schedule VII (i)	Yes	Madhya Pradesh	Satna	0.69
5	Installation of new Hand pump with bore well Baghai (01 Nos)		Yes	Madhya Pradesh	Satna	0.70
6	Installation of new Hand pump with bore well Hinauta (01 Nos)		Yes	Madhya Pradesh	Satna	0.67
7	Installation of new Hand pump with bore well Badhaura (01 Nos)		Yes	Madhya Pradesh	Satna	0.68
	SUB TOTAL					6.56

D.	EDUCATION (Promoting Education Schedule VII (ii))					
1	Renovation of Government Primary School Adiwasi basti Chulhi		Yes	Madhya Pradesh	Satna	4.94
2	Renovation of Government Girls Primary School Mankahari	Promoting	Yes	Madhya Pradesh	Satna	3.51
3	Renovation of Government Primary School Hinauta	Education Schedule VII (ii)	Yes	Madhya Pradesh	Satna	3.72
4	Renovation of Govt Higher Sec School Sijahata		Yes	Madhya Pradesh	Satna	7.16
5	Renovation of Govt Higher Sec School Bamhauri		Yes	Madhya Pradesh	Satna	6.88
6	Construction of 65 meter boundary wall at Government Primary School Adiwasi basti Chulhi		Yes	Madhya Pradesh	Satna	3.36
7	Providing of 60 Desk table to Government College Rampur Baghelan	Promoting Education Schedule VII (ii)	Yes	Madhya Pradesh	Satna	2.25
8	Slogan painting for awareness on different themes at near by villages (Total 200 Nos.)	Promoting Education Schedule VII (ii)	Yes	Madhya Pradesh	Satna	0.72
9	Smart class setup at Bamhauri and Sajjanpur Higher Secondary Schools (o8 classes)	Promoting Education Schedule VII (ii)	Yes	Madhya Pradesh	Satna	10.37

	SUB TOTAL					42.91
Ε.	ENVIRONMENT CONSERVATION (Environment Conservation Schedule VII (iv))					
1	Plantation with honey bee structure (100 Nos)	Environment Conservation Schedule VII (iv)	Yes	Madhya Pradesh	Satna	2.67
2	Survival & Maintenance of plantation at Sijahata & Baghai (For 73150 plants)	Environment Conservation Schedule VII (iv)	Yes	Madhya Pradesh	Satna	11.12
3	Survival & Maintenance of Satari village plantation (For 30000 plants)	Environment Conservation Schedule VII (iv)	Yes	Madhya Pradesh	Satna	8.10
4	Irrigation of plantation at nearby villages	Environment Conservation Schedule VII (iv)	Yes	Madhya Pradesh	Satna	4.25
5	Distribution of fruit plant saplings and plantation at Nearby villages (6000 Plants Between July to Oct)	Environment Conservation Schedule VII (iv)	Yes	Madhya Pradesh	Satna	1.12
6	Development and plantation of 18000 saplings at Satari village	Environment Conservation Schedule VII (iv)	Yes	Madhya Pradesh	Satna	8.24
7	De-silting of pond at Malgaon (6000 M3)	Conservation of Natural	Yes	Madhya Pradesh	Satna	4.32
8	De-silting of Sharman Dongari Jamuniya Pond (90M x 35M x 1.5M) - 4725 M3	Resources Schedule VII (iv)	Yes	Madhya Pradesh	Satna	9.13

9	Construction of Single Bore shaft structures at Malgaon		Yes	Madhya Pradesh	Satna	1.18
10	Construction of Single Bore shaft structures at Sharman Dongari Jamuniya	Water Conservation Schedule VII (iv)	Yes	Madhya Pradesh	Satna	1.66
11	Construction of double Bore shaft structures at Malgaon		Yes	Madhya Pradesh	Satna	2.14
12	Construction of Drum based Water Harvesting Structure at Badhaura (100 no's)	Water – Conservation	Yes	Madhya Pradesh	Satna	5.29
13	Construction of Drum based Water Harvesting Structure at Mahurachh (100 no's)	Schedule VII (iv)	Yes	Madhya Pradesh	Satna	4.96
14	Installation of solar street lights at Baghai - 20 Nos		Yes	Madhya Pradesh	Satna	3.27
15	Installation of solar street lights at Majhiyar -20		Yes	Madhya Pradesh	Satna	3.27
16	Installation of solar street lights at Hinauti -20	Environment Conservation	Yes	Madhya Pradesh	Satna	3.27
17	Installation of solar street lights at Mankahari - 20	Schedule VII (iv)	Yes	Madhya Pradesh	Satna	3.27
18	Installation of solar street lights at Sijahata - 20 Nos		Yes	Madhya Pradesh	Satna	3.27
19	Installation of solar street lights at Malgaon - 20		Yes	Madhya	Satna	3.27

				Pradesh							
20	Installation of solar street lights at Hinauta - 10		Yes	Madhya Pradesh	Satna	1.63					
21	Plantation of 70000 saplings in forest land at Khamhariya		Yes	Madhya Pradesh	Satna	53.81					
22	Purchasing and providing of Garbage Collection Vehicle to Janpad Panchayat Rampur Baghelan	Yes	Madhya Pradesh	Satna	6.59						
	SUB TOTAL					145.83					
F.	EMPOWERMENT & SKILL DEVELOPMENT Vocational Skill Development Schedule VII (ii)										
1	Training program for driver with license making for at least 100 incumbents (02 Batch of 50 nos.)	Vocational Skill Development Schedule VII (ii)	Yes	Madhya Pradesh	Satna	2.30					

3	Training program for carry bag making for 25 incumbents from nearby villages	Vocational Skill Development Schedule VII (ii)	Yes	Madhya Pradesh	Satna	2.50
4	Training program for Agarbatti making for 25 incumbents from nearby villages	Vocational Skill Development Schedule VII (ii)	Yes	Madhya Pradesh	Satna	2.50
5	Training program for Cotton wick making for 25 incumbents from nearby villages	Vocational Skill Development Schedule VII (ii)	Yes	Madhya Pradesh	Satna	1.50
6	Permanent Driving license making to 69 trainees	Vocational Skill Development Schedule VII (ii)	Yes	Madhya Pradesh	Satna	0.87
7	Setting up of marketing centre (Shop) at Satna for Self Help Group products	Livelihood Development Schedule VII (ii)	Yes	Madhya Pradesh	Satna	4.70
	SUB TOTAL					18.67

G.	PROMOTION OF SPORT ACTIVITIES (Promotion of Sports Schedule VII (vii) Promotion of										
1	Construction of main gate at playground Mankahari	Satna	4.54								
2	Construction of covered Pavilion at playground Mankahari	Satna	12.06								
	SUB TOTAL					16.60					
н.	SOCIAL WELFARE Social Welfare Schedule VII (iii)										
1	Facilities for senior citizens, old age homes (1 Activity)	Madhya Pradesh	Satna	6.00							
2	Provided 50 nos. dustbin to district administration Satna under Swatch Bharat Abhiyan	Support to Swatch Bharat Mission Schedule VII (i)	Yes	Madhya Pradesh	Satna	0.26					
3	Distribution of thermo cot innerwear to Sr. Citizens at Satna (200 Nos.)	Yes	Madhya Pradesh	Satna	0.51						
4	Financial assistance to Amalgamated Fund	Measure for benefit of Armed forces veterans war widows and their dependents Schedule VII	Yes	Madhya Pradesh	Satna	0.51					

		(vi)				
5	PCR Machine for Covid test to Gandhi Memorial Hospital Bhopal (M.P.)	Disaster Management Schedule VII (xii)	No	Madhya Pradesh	Bhopal	55.00
6	Providing of Sanitizer Hand wash to peoples at Satna (20 ltrs 50 nos)	Disaster Management Schedule VII (xii)	Yes	Madhya Pradesh	Satna	1.10
7	Financial assistance to Keshav Madhav Gau Sewa Sansthan, Bagaha, Satna for arrangement of food items in COVID-19 Lockdown	Disaster Management Schedule VII (xii)	Yes	Madhya Pradesh	Satna	0.11
8	Distribution of 200 food packets in COVID 19 lockdown in Rampur Baghelan	Disaster Management Schedule VII (xii)	Yes	Madhya Pradesh	Satna	0.97
9	Fina. Asst. to Manas Sangh Ramvan, For Corona Pandemic Management	Disaster Management Schedule VII (xii)	Yes	Madhya Pradesh	Satna	5.24

10	Fodder for Gaushala and other animal welfare activities (Mahurachh Gaushala)	Animal Welfare Schedule VII (iV)	Yes	Madhya Pradesh	Satna	4.00
	SUB TOTAL					73.70
	GRAND TOTAL					383.65

Prism Cement Limestone Mine 253.326 Hect: Modification of Mining Plan_2018-19 to 2020-21

exploration activities are completed. As on 1st January 2018 the total reserves of this mine are 28.73 million tones.

Annual requirement of Limestone is about 9.0 million tonnes. It is proposed to mine about 3.00 million tonnes of Limestone every year from this ML area. Remaining quantity will be met from other leases of the Company. Based on the proposed production capacity, the life of the mine is about 9.5 years which is likely to extend as reserves are enhanced post exploration activates.

Conceptual Exploration:

The exploration has been carried out by the GEM Division of M/s ACC Ltd. Overall three leases in village Hinauti & Sijhatta. The spacing of BH are at 200 x 200 mtrs. 23 boreholes has been completed in the current 2 years period. Now, it is proposed to carry out remaining drilling during this proposal periods from 2018-19 to 2020-21 and there will be no conceptual exploration in the mining lease area. The proposed locations where drilling will be carried out is shown in the Plate No. – IV.

As on Date			D	Table No. uring Proposa		During Conceptual Perio			
Түре	Quantum No. / Size	Area Covered (Ha.)	Туре	Quantum No. / Size	Area Covered (Ha.)	Туре	Quantum No. / Size	Area Covered (Ha.)	
Pits			Pits			Pits	and and a state of the second state of the sec	 	
Trench			Trench			Trench		19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	
BH	59 + 16 + 23	253.236 (Large Grid)	BH	36	(200X200 Grid) 253,236 Ha (2 nd Band)	BHAA CON		× Start	
Other			Other			Others			
			. <u></u>			· · · · · · · · · · · · · · · · · · ·	مرون المرون ا مرون المرون ال		

Table No. 2.14

All exploration will be conducted in the proposal period there is no/proposal to extended activities in to conceptual period.

Surface Geological Plan and Sections have been given in the Plate No. - IV and Plate No. - V respectively showing the locations of the boreholes drilled and ultimate pit limit.

Conceptual development:

Following Pits will be available at the end of Conceptual Period:

Chapter 2: Mining

ř

prism Cement Limestone Mine 253.326 Hect: Modification of Mining Plan_2018-19 to 2020-21

•				Table I	No. 2.15																																																					
		Broken	Pit	Surface	Pit Maximum No. of Benches Bottom on any side of Pit				Overall																																																	
S. No.	Pit Name/ No.	Area (Ha)	Bottom Area (Ha)	RL (Range)	RL (Lowest)	Туре	Bench No.	Avg. Height	Slope																																																	
						Soil	1	1	1																																																	
1	Pit-1	121.17	121.17	121.17	104.85 288- 295)1 17 10 <i>1</i> 85	288-				2/3	Waste Rock	-	-	45°																																											
								ľ			[[[ľ	ſ	[ĺ	ľ					ľ				ŗ		ſ	ſ								ľ												
				··	•••••••	Soil	1	1																																																		
2	Pit-2	47.54	26.54	291- 299	243	Waste Rock	3	8	45'																																																	
			ļ			Limestone	5	6																																																		
	Total	168.71	131.39																																																							

Ore to be generated during conceptual period Waste Rock to be generated during conceptual period Soil to be generated during conceptual period = 66,898,737 Tonnes
 = 23,568,600 M³ (Cum)
 = 1,113,912 M³ (Cum)

Plan period 2021-26:

「時間の日本の語を見た」「時間」「時間」「日本の日本」

「「「「「「「」」」」」

The opening balance reserve for this period is proposed to be at 6.52 million tons after generating 15.00 million tons for the plan period of 2016-21. The ore proposed to be exploited in this period is 6.5 Million tons. The working is proposed to be between pit located between N -1208 to 361 and E -20 to 638, occupying an area of 10.3 ha. The second working from where mineral is proposed to be exploited will be located between N 2560 to 2885 and E 507 to 1134 in an area of 10.82 ha. The working will be limited to two to three benches in mineral. The residual reserves at the end of this plan period area proposed to be at 0.00 million tons.

AM

Prism Cement Limestone Mine 253.326 Hect: Modification of Mining Plan_2018-19 to 2020-21

Conceptual OB Dump Management:

The inter burden of saly limestone ranges from 16 to 26 mts thin soil cover of 1 to 6 mts covers the area left out of current mining activities. It is proposed to utilize the Waste rock in backfilling the mined out area. Plantation will be carried out over it after spreading 1 mtr. thick soil cover. No external dumping will be done during rest of life of the mine. Entire quantity of soil and waste rock to be generated will be utilized in backfilling purpose in mined out area.

(A) Present Position

1997年後には「第二日」としていた。その時代のない時代には、1998年後の日本語を設定する「「「「「「「「「」」」というです。「「「」」」というない時代には、1998年

a) Following Soil dumps will be available at at present: TABLE NO. 2.16

Dump No.	Type Active/ Inactive	(M ³)	Quantity (Tonnes)	1	Base Area (Ha.)	Avg. Height (M)	Area stabilized	Location
S1	Inactive	97281	155649	28366	2.83	3	Terracing & Gentle slope	1241E to 1528E and -86N to -351N
S2	Inactive	144105	230568	13410	1.34	13 .	Temporary in pit Soil Storage	1315E to 1447E & -271N to -411N
То	tai	241386	386217	41776	4.17			

b) Following Waste dumps are available in the area at present:

Dump No.	Type Active/ Inactive	-	Quantity (Tonnes)	Base Area (M²)	Base Area (Ha.)	Avg. Height (M)	Area stabilized	Location
D1	Active	821892	2054730	47907	4.79	17	Temporary in pit Dumping	621E to 850E and -1205N to -1517N
Total		821892	2054730	47907	4.79			

MIGHTER/APPROVED

Cement Limestone Mine 253.326 Hect: Modification of Mining Plan_2018-19 to 2020-21

Proposal Period Position (B)

Following Soil dumps will be available at the end of Proposal Period: a)

Dump No	Type Active/ Inactive	(M ³)	Quantity (Tonnes)	1	Base Area (Ha.)	Avg. Height (M)	Area stabilized	Location
- S1	Inactive	97281	155649	28366	2.83	3	Terracing & Gentie slope	1241E to 1528E and -86N to -351N
S2	inactive	144105	230568	13410	1.34	13 1	Temporary in pit Soll Storage	1315E to 1447E & -271N to -411N
Total		241386	386217	41776	4.17			

Table No). 2.	17
----------	-------	----

Following Waste dumps will be available at the end of Proposal Period: b)

Table No. 2.18

Dump No:	Type Active/ Inactive	1 -	Quantity (Tonnes)	Area	Base Area (Ha.)	Avg. Height (M)	Area stabilized	Location
D1	Active	821892	2054730	47907	5.79	27	Temporary in pit Dumping	571E to 860E and -1205N to -1517N
Total		821892	2054730	47907	5.79			· · · · · · · · · · · · · · · · · · ·

(C) Conceptual Period Position

a) Following dumps will be available at the end of conceptual Period: No dumps (soil & Waste Rock) will be available at the conseptual period. Entire soil and waste rock will be used for backfilling.

MONT INDER

4.5 Conceptual Reclamation & Rehabilitation:

APPROVED The mining lease are is about 248 Ha. Area will be disturbed by mining activity out of which 80 Ha mined out area will be reclaimed and rehabilitated by way of backfilling and plantation at the end of life of the mines and rest of the area i.e. 168 Ha. will be developed as water reservoir for recharging the water table of the area.

coment Limestone Mine 253.326 Hect: Modification of Mining Plan_2018-19 to 2020-21

	2		Table	No. 2.19				
			Reha	bilitation (Ha	<u>}</u>		Protective	
	Mined Out Area (Ha)	Reclamation by Backfilling (Ha)	By Plantation on Backfilled area	By Water Reservoir	Total	Rehabilitation of Dump by Comp. & Afforestation	measures for dumdum (GD/RW/ST)	
	55.12	49.5	19.09	14.3	33.39			
id.	22.91	16.71	7.68	0	7.68			
ปี a	248	80.0	80.0	168.0	248			

The exploration in the lease is underway. The ultimate area (size) of the pit will be atound 248 Ha. Whereas, ultimate depth of the pit will be about 60 m. and ultimate pit slope will be 45⁰.

Pit position as on date, proposed pit position at the end of scheme period and ditimate pit size at the end of life of the mine will be as shown in Conceptual Plan in Plate No. – XI and in section along with proposed Conceptual Plan is given in Plate No. XII.

B UNDERGROUND MINING:

NOTAPPLICABLE

Chapter 2: Mining

Page | 47

Ξ	C	ON	AE	N	LA	B	OF	A	TO	RI	ES	P	/T.	LTD	

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ1/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT AIR*

:

:

Name of the Company Address of the Company M/s Prism Johnson Ltd. Village Mankahari

Tehsil Rampur Baghelan

District Satna (M.P.)

Mr. Maan Singh

Sample Collected by Sampling Method Instrument Used

: IS: 5182 : :

FDS & RDS

				Re	sult		Limit as per National	
Sl. No.	Tests Conducted	Method	L1	L2	L3	L4	Ambient Air Quality	
		10.11.2020	10.11.2020	10.11.2020	10.11.2020	Standards		
1	PM _{2.5} (µg/m ³)	NAAQM guide line volume – I by CPCB	32.80	34.50	40.60	37.90	60	
2	$PM_{10} (\mu g/m^3)$	IS:5182 (Part-23)	62.10	64.80	72.20	69.20	100	
3	$SO_2(\mu g/m^3)$	IS:5182 (Part-2)	10.85	9.65	12.40	12.60	80	
4	$NO_x(\mu g/m^3)$	IS:5182 (Part-6)	14.65	17.85	17.10	19.80	80	
5	CO (mg/m ³)	IS:5182 (Part-10)	0.45	0.55	0.50	0.55	02	

*The results are related only to item tested.

Note:

L1= NearPCL Colony L2=Near Guest House, L3= Near Crusher Unit-II L4= Near Admin. Building

Standards:

S1 = Ambient Air Quality Standard for Residential, Industrial & Rural Other Area

Signatory

ECOMEN	LA	BO	RAT	ORIES	S PV1	LTD.
--------	----	----	-----	-------	-------	------

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

E

TEST REPORT NO: ECO LAB/AAQ2/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT AIR

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan
Sample Collected by	:	District Satna (M.P.) Mr. Maan Singh
Sampling Method Instrument Used	:	IS: 5182 FDS & RDS

				Re	sult		Limit as per National	
Sl. No.	Tests Conducted	Method	L1	L2	L3	L4	Ambient Air Quality	
			11.11.2020	11.11.2020	11.11.2020	11.11.2020	Standards	
1	$PM_{2.5}(\mu g/m^3)$	NAAQM guide line volume – I by CPCB	45.80	38.40	30.50	29.70	60	
2	$PM_{10} (\mu g/m^3)$	IS:5182 (Part-23)	69.20	65.80	49.20	58.10	100	
3	$SO_2(\mu g/m^3)$	IS:5182 (Part-2)	10.10	14.30	13.70	14.80	80	
4	$NO_x(\mu g/m^3)$	IS:5182 (Part-6)	17.50	18.20	19.60	20.50	80	
5	CO (mg/m ³)	IS:5182 (Part-10)	0.55	0.45	0.30	0.25	02	

*The results are related only to item tested.

Note:

L1= Nr Mines Site Office L3=Village Hinauti L2= Near Western Block Garden, L4= Village Sijahata

Standards:

S1 = Ambient Air Quality Standard for Residential, Industrial & Rural Other Area

Authorized Signatory

ECOMEN LABORATORIES P	VT.	LTD.
-----------------------	-----	------

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601.GSTIN : 09AAACE6076H121

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ3/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT AIR

Name of the Company	:	M/s Prism Johnson Ltd.
Address of the Company	:	Village Mankahari
		Tehsil Rampur Baghelan
		District Satna (M.P.)
Sample Collected by	:	Mr. Maan Singh
Sampling Method	:	IS: 5182
Instrument Used	:	FDS & RDS

				Re	sult		Limit as per National
Sl. No.	Tests Conducted	Method	L1	L2	L3	L4	Ambient Air Quality
			11.11.2020	11.11.2020	11.11.2020	11.11.2020	Standards
1	$PM_{2.5}(\mu g/m^3)$	NAAQM guide line volume – I by CPCB	29.80	36.50	40.10	37.10	60
2	$PM_{10} (\mu g/m^3)$	IS:5182 (Part-23)	54.40	50.30	55.60	68.80	100
3	$SO_2(\mu g/m^3)$	IS:5182 (Part-2)	10.10	11.80	11.60	10.10	80
4	$NO_x(\mu g/m^3)$	IS:5182 (Part-6)	12.85	16.20	16.80	15.80	80
5	CO (mg/m ³)	IS:5182 (Part-10)	0.45	0.35	0.40	0.45	02

*The results are related only to item tested.

Note:

L1= Adiwasi Tola (Nr Bagahai ML Area) L3=South Side of Working Pit (Bagahai Mines) L4= Near Boundary Pillar No.64 Bagahai

L2= At BaisanTola (Nr. Bagahai ML Area),

Standards:

S1 = Ambient Air Quality Standard for Residential, Industrial & Rural Other Area

Authorized Signatory

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601.GSTIN : 09AAACE6076H121

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF WORK PLACE AIR MONITORING

Name of the Company	:	M/s Prism Johnson Ltd.
Address of the Company	:	Village Mankahari
		Tehsil Rampur Baghelan
		District Satna (M.P.)
Sample Collected by	:	Mr. Maan Singh
Sampling Method	:	IS: 5182
Instrument Used	:	FDS & RDS

				Result						
Sl. No.	Tests Conducted	Method	L1	L1 L2		L4	National Ambient Air Ouglity			
			12.11.2020	12.11.2020	12.11.2020	12.11.2020	Quality Standards			
1	PM _{2.5} (µg/m ³)	NAAQM guide line volume – I by CPCB	50.80	45.60	49.80	45.40	60			
2	$PM_{10} (\mu g/m^3)$	IS:5182 (Part-23)	79.20	82.30	80.60	78.10	100			
3	$SO_2(\mu g/m^3)$	IS:5182 (Part-2)	17.80	14.70	12.10	10.90	80			
4	$NO_x(\mu g/m^3)$	IS:5182 (Part-6)	18.20	16.30	17.90	15.40	80			
5	CO (mg/m ³)	IS:5182 (Part-10)	0.55	0.50	0.52	0.45	02			

*The results are related only to item tested.

Note:

L1= Near Cement Mill Unit –II L3= Near Packing Plant L2= Near Railway Yard, L4= Kiln Unit-II

Authorized Signatory

Ξ	CC	DM	EN	1	LA	B	OF	A	TO	RI	ES	PV	T.	LTD	

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ5/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT AIR

:

:

:

:

:

Name of the Company Address of the Company M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan District Satna (M.P.) Mr. Maan Singh

Sampling Method Instrument Used

Sample Collected by

IS: 5182

FDS & RDS

				Result			Limit as per National	
Sl. No.	Tests Conducted	Method	L1	L2	L3	L4	Ambient Air Quality Standards	
			12.11.2020	12.11.2020	12.11.2020	12.11.2020		
1	$PM_{2.5}(\mu g/m^3)$	NAAQM guide line volume – I by CPCB	30.10	33.70	29.50	27.20	60	
2	$PM_{10} (\mu g/m^3)$	IS:5182 (Part-23)	62.10	75.60	64.90	48.10	100	
3	$SO_2(\mu g/m^3)$	IS:5182 (Part-2)	8.95	12.40	13.10	12.20	80	
4	$NO_x(\mu g/m^3)$	IS:5182 (Part-6)	12.80	15.30	20.80	19.30	80	
5	CO (mg/m ³)	IS:5182 (Part-10)	0.50	0.45	0.40	0.45	02	

*The results are related only to item tested.

Note:

L1=Nr. Nar Nala Bridge, L2= Nr. Medhi Mines Boundary Pillar No 28 L3=Nr. Medhi Mines Boundary Pillar No.23L4= Village Malgaon

Standards:

S1 = Ambient Air Quality Standard for Residential, Industrial & Rural Other Area

Authorized Signatory

-	C	O	AE	EN	L	A	B	0	R	A	T	0	R	IE	S	P	V	T.	Ľ	TD).

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ6/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT AIR

:

:

:

:

:

Name of the Company Address of the Company M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan District Satna (M.P.)

Sampling Method Instrument Used

Sample Collected by

Mr. Maan Singh IS: 5182

FDS & RDS

				Result			Limit as per National
SI. No.	Tests Conducted	Method	L1	L2	L3	L4	Ambient Air Quality
			13.11.2020	13.11.2020	13.11.2020	13.11.2020	Standards
1	$PM_{2.5}(\mu g/m^3)$	NAAQM guide line volume – I by CPCB	27.90	25.20	29.80	30.10	60
2	$PM_{10} (\mu g/m^3)$	IS:5182 (Part-23)	42.50	57.20	47.50	58.30	100
3	$SO_2(\mu g/m^3)$	IS:5182 (Part-2)	10.05	12.80	12.65	11.70	80
4	$NO_x(\mu g/m^3)$	IS:5182 (Part-6)	13.85	18.20	16.20	18.60	80
5	CO (mg/m ³)	IS:5182 (Part-10)	0.25	0.40	0.35	0.30	02

*The results are related only to item tested.

Note:

L1=Village Badarkha L3= Village Chulhi

L2= Village Hinauta L4= Village Kulhari

Standards:

S1 = Ambient Air Quality Standard for Residential, Industrial & Rural Other Area

Signatory

FORMAT NO. ECO/QS/FORMAT/23 REPORT NO: ECO LAB/Piezo/GW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

REPORT OF WATER LEVEL MEASUREMENT

Name of the Customer Address of the Customer	 M/s. Prism Johnson Ltd. Village - Mankahari, Tehsil - Rampur Baghelan
	Distt.Satna (M.P.)
Measurement by	: Mr. Maan Singh
Date of Measurement	: November 12 th , 2020

Sl. No.	Piezometer Name.	Water Level (meter)		
1.	Colony Gate	14.5		
2.	Behind B Block	6.2		
3.	Behind C Block	4.8		
4.	Auto Work Shop	14.3		
5.	In Front Den	5.1		
6.	Rose Garden near boundary	20.4		
7.	Rose Garden near Road	16.3		
8.	Western Block Mines	18.3		
9.	Near New Magzine Mines	12.5		
10.	Mankahari Mines	16.7		
11.	Mines near Ramprasan	8.5		
12.	Piezo No12	12.5		
13.	Piezo Rose Garden	20.4		
14.	Piezo Rose Garden Near Road	16.3		

Analyst

Authorized Signatory

inager (O)

200

ECOMEN LABORATORIES PVT. LTD.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/RW/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company Address of the Company	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Raw Water (WHRS)

	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500: 1991(Reaff:2012)		
SL No.					Desirable	Permissible	
			<5.0	5-100	5.00	15.0	
1.	Colour (Hazen unit)	APHA, 23rd Ed. 2017, 2120 B	BDL	1 - 100	1.0	5.0	
2	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	7.31	2.0 -12	6.5-8.5	No Relar.	
3.		APHA, 23 rd Ed. 2017, 4500H+ A+B		1-2000	-	-	
4.	Conductivity (µmhos/cm)	APHA, 23 ⁻⁴ Ed. 2017, 2510-A + B	833.0		500	2000	
	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	411.0	5 - 5000			
5.		APHA, 23" Ed. 2017, 2320 A+ B	108.0	5-1500	200	600	
6,	Alkalinity (mg/l)	APHA, 23" Ed. 2017, 2340 A+C	180.0	5-1500	200.0	600.0	
7.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23" Ed. 2017, 2340 A+C	131.76	5-1500	200,0	600.0	
â.	Non Corbonate as CaCO3	APHA, 23 rd Ed. 2017, 3500 Ca A+B	49.6	5-1000	75.0	200.0	
9.	Calcium as Ca (mg/l)		13.6	5-1000	30.0	100.0	
10.	Magnesium as Mg (mg/l)	APHA, 23" Ed. 2017, 3500 Mg A+B		1-100			
11.	Sodium as Na (mg/l)	APHA, 23rd Ed. 2017, 3500 Na, A+B	16.3				
12.	Potassium as K (mg/l)	APHA, 23rd Ed. 2017, 3500 K, A+B	1.02	1-100	-		
13.	Chloride as Cl (mg/l)	APHA, 23" Ed. 2017, 4500 CI A+B	34.0	5-1000	250.0	1000.0	
14.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	1.17	0.05-10	1.0	1.5	
15.	Sulfate as SO ₄ (mg/l)	APHA, 23" Ed. 2017, 4500-SO4" E	31.0	1.0 -250	200,0	400.0	
16.		APHA, 23" Ed. 2017, (4500 SiOr-C)	18.0	0.1-50		-	
17.	Nitrate Nitrogen as NO3 (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ° B	5.20	5.0 - 100	45.0	No Relax	
18.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.32	0.02-50	0.3	No Relay	

*The result are related only to item tested. BDL = Below Detection Limit

astrymos Analyst

Authorized signatory Ecomen-Laboratories Pvt. Ltd. Flat No.-8, 2nd Floor, Arif Chamber-V Sector-H, Aliganj, Lucknow-226024 Ph.-2746282, Fax:2745726

Ouality Manager

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Baghai Lime Stone Drinking water (Mine Site Office)
Sample ID Code	: ELW-12585

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDA 10500:1991(Re	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	BDL	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.44	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	393.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	160.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	188.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	43.2	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	19.44	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	22.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.37	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	37.4	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	9.65	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.16	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 - A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.23	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017(3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.20	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E. <i>coli</i> (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 LABORATORIES P Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Johnson Ltd.
Address of the Company	:	Village Mankahari, Tehsil Rampur Baghelan
		Distt.Satna (M.P.)
Sampling Method	:	APHA/ IS: 3025
Sample Collected by	:	Mr.Maan Singh
Sample Quantity	:	As per requirement.
Date of Sampling	:	12.11.2020
Date of Receiving	:	15.11.2020
Date of Analysis	:	15.11.2020 to 25.11.2020
Source of Sample	:	Plant Site - Bore Well
Sample ID Code	:	ELW-12586

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)		
					Desirable	Permissible	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	BDL	1 - 100	1.0	5.0	
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.29	2.0 -12	6.5-8.5	No Relax.	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	532.0	5 - 5000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	128.0	5-1500	200	600	
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	192.0	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	48.0	5 - 1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	17.49	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	36.0	5-1000	250.0	1000.0	
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.35	0.05-10	1.0	1.5	
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	92.3	1.0 -250	200.0	400.0	
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	10.23	5.0 - 100	45.0	No Relax.	
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30	
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.11	0.02-50	5.0	15	
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.	
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax	
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax	
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05	
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax	
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.	
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5	
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.25	0.2 - 10	0.5	1.0	
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2	
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0	
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax	
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-	
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.15	0.02-50	0.3	No Relax.	
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent	
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent	

*The result are related only to item tested. BDL = Below Detection Limit

Analyst

Authorized Signatory

ECOMEN

٦

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company				
Name of the Company	:	M/s. Prism Johnson Ltd.		
Address of the Company	:	Village Mankahari, Tehsil Ran	mpur Bagh	elan
		Distt.Satna (M.P.)		
Sampling Method	:	APHA/ IS: 3025		
Sample Collected by	:	Mr.Maan Singh		
Sample Quantity	:	As per requirement.		
Date of Sampling	:	12.11.2020		
Date of Receiving	:	15.11.2020		
Date of Analysis	:	15.11.2020 to 25.11.2020		
Source of Sample	:	Bagahai Village – Hand Pum	р	
Sample ID Code		ELW-12587		

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)		
					Desirable	Permissible	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.3	1 - 100	1.0	5.0	
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.42	2.0 -12	6.5-8.5	No Relax.	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	496.0	5 - 5000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	164.0	5-1500	200	600	
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	176.0	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	46.4	5 - 1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	14.58	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	30.0	5-1000	250.0	1000.0	
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.26	0.05-10	1.0	1.5	
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	51.5	1.0 -250	200.0	400.0	
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	12.1	5.0 - 100	45.0	No Relax.	
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30	
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.13	0.02-50	5.0	15	
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.	
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax	
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax	
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05	
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax	
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.	
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5	
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	BDL	0.2 - 10	0.5	1.0	
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2	
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0	
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax	
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-	
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.20	0.02-50	0.3	No Relax.	
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent	
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent	

*The result are related only to item tested. BDL = Below Detection Limit

Analyst

Authorized Signatory

Ecomen Laboratories i'vt. Ltd. Hut No.8 Second Floor Arit Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

eco/Men LABORATORIES PVT LTD.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 LABORATORIES P Phone No. : (91-522) 2746282, 2745726 Telefax No.: : (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20

TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Prism Lime Stone Mine Drinking Water (Site Office)
Sample ID Code	: ELW-12588

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)		
					Desirable	Permissible	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	BDL	1 - 100	1.0	5.0	
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.46	2.0 -12	6.5-8.5	No Relax.	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	432.0	5 - 5000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	156.0	5-1500	200	600	
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	240.0	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	59.2	5 - 1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	22.35	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	52.0	5-1000	250.0	1000.0	
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.31	0.05-10	1.0	1.5	
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	86.3	1.0 -250	200.0	400.0	
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	7.32	5.0 - 100	45.0	No Relax.	
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30	
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-50	5.0	15	
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.	
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax	
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax	
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05	
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax	
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.	
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5	
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.25	0.2 - 10	0.5	1.0	
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2	
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0	
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax	
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-	
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.23	0.02-50	0.3	No Relax.	
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent	
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent	

Authorized Signatory

...

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 LABORATORIES P Phone No. : (91-522) 2746282, 2745726 Telefax No.: : (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Johnson Ltd.		
Address of the Company	<i>'</i> :	Village Mankahari, Tehsil Rampur Baghelan		
		Distt.Satna (M.P.)		
Sampling Method	:	APHA/ IS: 3025		
Sample Collected by	:	Mr.Maan Singh		
Sample Quantity	:	As per requirement.		
Date of Sampling	:	12.11.2020		
Date of Receiving	:	15.11.2020		
Date of Analysis	:	15.11.2020 to 25.11.2020		
Sampling Method: APHA/ IS: 3025Sample Collected by: Mr.Maan SinghSample Quantity: As per requirement.Date of Sampling: 12.11.2020Date of Receiving: 15.11.2020Date of Analysis: 15.11.2020 to 25.11.2020Source of Sample: MedhiVillage -Hand Pump				
Sample ID Code	:	ELW-12589		

SI. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012) Desirable Permissible		
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.21	1 - 100	1.0	5.0	
5.	рН	APHA, 23 rd Ed. 2017, 4500H ⁺ A+B	7.18	2.0 -12	6.5-8.5	No Relax.	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	365.0	5 - 5000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	136.0	5-1500	200	600	
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	168.0	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	38.4	5 - 1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	17.49	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	32.0	5-1000	250.0	1000.0	
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.36	0.05-10	1.0	1.5	
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	61.5	1.0 -250	200.0	400.0	
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	8.63	5.0 - 100	45.0	No Relax.	
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30	
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-50	5.0	15	
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.	
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax	
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax	
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05	
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 - A+B	BDL	0.04-10	0.05	No Relax	
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.	
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5	
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.22	0.2 - 10	0.5	1.0	
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2	
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0	
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax	
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-	
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.19	0.02-50	0.3	No Relax.	
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent	
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent	

*The result are related only to item tested. BDL = Below Detection Limit

Analyst

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 LABORATORIES P Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Malgaon Village – Hand Pump
Sample ID Code	: ELW-12590

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012) Desirable Permissible		
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA. 23 rd Ed. 2017. A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	BDL	1 - 100	1.0	5.0	
5.	pH	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.38	2.0 -12	6.5-8.5	No Relax.	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	569.0	5 - 5000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	166.0	5-1500	200	600	
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	212.0	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	449.6	5 - 1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	21.38	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	28.0	5-1000	250.0	1000.0	
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.34	0.05-10	1.0	1.5	
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	67.4	1.0 -250	200.0	400.0	
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	21.2	5.0 - 100	45.0	No Relax.	
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30	
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.16	0.02-50	5.0	15	
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.	
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax	
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax	
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05	
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax	
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.	
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5	
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	BDL	0.2 - 10	0.5	1.0	
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2	
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0	
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax	
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-	
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.20	0.02-50	0.3	No Relax.	
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent	
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent	

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ECOMEN

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 LABORATORIES P Phone No. : (91-522) 2746282, 2745726 Telefax No.: : (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Johnson Ltd.
Address of the Company	:	Village Mankahari, Tehsil Rampur Baghelan
		Distt.Satna (M.P.)
Sampling Method	:	APHA/ IS: 3025
Sample Collected by	:	Mr.Maan Singh
Sample Quantity	:	As per requirement.
Date of Sampling	:	12.11.2020
Date of Receiving	:	15.11.2020
Date of Analysis	:	15.11.2020 to 25.11.2020
Source of Sample	:	Badarkha Village – Bore Well
Sample ID Code	:	ELW-12591

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)		
					Desirable	Permissible	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.43	1 - 100	1.0	5.0	
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.11	2.0 -12	6.5-8.5	No Relax.	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	571.0	5 - 5000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	152.0	5-1500	200	600	
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	204.0	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	52.8	5 - 1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	17.49	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	24.0	5-1000	250.0	1000.0	
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.20	0.05-10	1.0	1.5	
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	93.3	1.0 -250	200.0	400.0	
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	12.3	5.0 - 100	45.0	No Relax.	
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30	
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.21	0.02-50	5.0	15	
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.	
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax	
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax	
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05	
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax	
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.	
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5	
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.26	0.2 - 10	0.5	1.0	
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2	
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0	
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax	
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-	
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.12	0.02-50	0.3	No Relax.	
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent	
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent	

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Address of the Company : Village Mankahari, Tehsil Rampur Baghelan	l
Thun cas of the Company . I mage Mankanan, Tensh Rampar Daghetan	
Distt.Satna (M.P.)	
Sampling Method : APHA/ IS: 3025	
Sample Collected by : Mr.Maan Singh	
Sample Quantity : As per requirement.	
Date of Sampling : 12.11.2020	
Date of Receiving : 15.11.2020	
Date of Analysis : 15.11.2020 to 25.11.2020	
Source of Sample : Mankahari Village – Hand Pump	
Sample ID Code : ELW-12592	

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012) Desirable Permissible	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.05	1 - 100	1.0	5.0
5.	pH	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.21	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	678.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	180.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	296.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	76.8	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	25.27	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	50.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.48	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	98.0	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	13.4	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.22	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 - A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	0.21	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.17	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: PCL Colony Supply Water – Bore Well
Sample ID Code	: ELW-12593

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDA 10500:1991(R Desirable	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA. 23 rd Ed. 2017. 2130-A+B	1.21	1 - 100	1.0	5.0
5.	pH	APHA, 23 rd Ed. 2017, 4500H+ A+B	6.97	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	601.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	140.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	284.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	72.0	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	25.27	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	64.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.37	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	108.0	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	13.26	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.12	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	BDL	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.23	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested.BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Mines Site Office HinautiSijatah
Sample ID Code	: ELW-12594

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.20	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.59	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	486.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	152.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	220.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	58.4	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	17.98	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	40.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.29	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	48.8	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	9.21	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.24	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.09	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Chullhi Village – Bore Well
Sample ID Code	: ELW-12595

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDA 10500:1991(R	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.03	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.28	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	431.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	158.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	266.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	54.4	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	31.59	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	78.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.39	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	105.5	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	16.1	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.20	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.22	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.17	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Hinauta Village – Bore Well
Sample ID Code	: ELW-12596

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.32	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.53	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	390.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	144.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	228.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	59.2	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	19.44	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	36.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.37	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	98.3	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	9.5	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.09	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 - A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.20	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.12	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.	
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan	
	Distt.Satna (M.P.)	
Sampling Method	: APHA/ IS: 3025	
Sample Collected by	: Mr.Maan Singh	
Sample Quantity	: As per requirement.	
Date of Sampling	: 12.11.2020	
Date of Receiving	: 15.11.2020	
Date of Analysis	: 15.11.2020 to 25.11.2020	
Source of Sample	: Bore well at Project Office	
Sample ID Code	: ELW-12597	

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDA 10500:1991(R	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.22	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.25	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	344.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	136.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	204.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	46.4	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	21.38	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	51.1	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.39	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO4 ²⁻ E	69.5	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	17.5	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.16	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.26	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.20	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Plant Pump House
Sample ID Code	: ELW-12598

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	<1.0	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.24	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	379.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	124.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	216.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	56.0	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	18.46	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	48.02	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.30	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	43.22	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	12.6	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.17	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.27	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.10	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Johnson Ltd.
Address of the Company	y :	Village Mankahari, Tehsil Rampur Baghelan
		Distt.Satna (M.P.)
Sampling Method	:	APHA/ IS: 3025
Sample Collected by	:	Mr.Maan Singh
Sample Quantity	:	As per requirement.
Date of Sampling	:	12.11.2020
Date of Receiving	:	15.11.2020
Date of Analysis	:	15.11.2020 to 25.11.2020
Source of Sample	:	Packing Plant Unit-I
Sample ID Code	:	ELW-12599

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDA 10500:1991(Re	eaff:2012)
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	Desirable 5.00	Permissible 15.0
2.	Odour	APHA, 23 ^{-Ed.} 2017, 2120 B APHA, 23 rd Ed. 2017, 2150 B				
		APHA, 23 Ed. 2017, 2150 B APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste		Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.05	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.37	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	343.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	128.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	220.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	57.6	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	18.46	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	52.2	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.36	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	49.6	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	17.4	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.13	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.23	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.16	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested.BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Sijhata Village – Bore Well
Sample ID Code	: ELW-12600

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range		NDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.28	1 - 100	1.0	5.0	
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.09	2.0 -12	6.5-8.5	No Relax.	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	377.0	5 - 5000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	140.0	5-1500	200	600	
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	260.0	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	60.8	5 - 1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	26.24	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	74.0	5-1000	250.0	1000.0	
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.37	0.05-10	1.0	1.5	
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	91.1	1.0 -250	200.0	400.0	
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	8.63	5.0 - 100	45.0	No Relax.	
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30	
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.13	0.02-50	5.0	15	
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.	
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax	
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax	
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05	
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 - A+B	BDL	0.04-10	0.05	No Relax	
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.	
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5	
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.26	0.2 - 10	0.5	1.0	
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2	
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0	
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax	
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-	
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.14	0.02-50	0.3	No Relax.	
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent	
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent	

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

TEST REPORT NO: ECO LAB/AN1/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT NOISE LEVEL

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan District- Satna (M.P.)
Sample Collected by	:	Mr. Maan Singh
Date of Monitoring	:	11.11.2020 to 13.11.2020
Instrument Description	:	Noise Meter (Make:HTC)
Test Method	:	IS: 4412, Part-1 & 2, 1991

Sl. No.	Locations	Day Time Leq Value in dB(A)	Night Time Leq Value in dB(A)
1.	Near PCL Colony	44.80	40.20
2.	Near Guest House	47.50	42.60
3.	Near Crusher Unit-II	60.10	51.70
4.	Near Admin. Building	55.90	49.30

Noise (Ambient Standard)

Area Code	Category of area	Limit in dB (A) Leq	
		Day Time	Night Time
А	Industrial Area	75	70
В	Commercial Area	65	55
С	Residential Area	55	45
D	Silence Zone	50	40

Note:

1. Day time is reckoned in between 6:00 AM and 10:00 PM.

2. Night time is reckoned in between 10:00 PM and 6:00 AM

3. Silence zone is defined as area up to 100m around such premises as hospitals, educational institutions & courts. The silence zones are to be declared by a competent authority.

4. Mixed categories of areas should be declared as one of the four above-mentioned categories by the competent authority and the corresponding standard shall apply.

Analyst

Authorized Signatory

nager (O)

TEST REPORT NO: ECO LAB/AN2/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT NOISE LEVEL

Name of the Company	:	M/s Prism Johnson Ltd. Hinauti- Sijahata& Mankahari Limestone mines
Address of the Company	:	Village Mankahari Tehsil Rampur Baghelan District- Satna (M.P.)
Sample Collected by	:	Mr. Maan Singh
Date of Monitoring	:	11.11.2020 to 13.11.2020
Instrument Description	:	Noise Meter (Make-HTC)
Test Method	:	IS: 4412, Part-1 & 2, 1991

Sl. No.	Locations	Day Time Leq Value in dB(A)	Night Time Leq Value in dB(A)
1.	At Mines site Office	60.85	52.90
2.	Near Western Block Garden	56.10	51.40
3.	Village Hinauti	44.85	38.10
4.	Village Sijahata	46.60	36.80

Noise (Ambient Standard)

Area Code	Category of area	Limit in dB (A) Leq	
		Day Time	Night Time
А	Industrial Area	75	70
В	Commercial Area	65	55
С	Residential Area	55	45
D	Silence Zone	50	40

Note:

1. Day time is reckoned in between 6:00 AM and 10:00 PM.

- 2. Night time is reckoned in between 10:00 PM and 6:00 AM
- 3. Silence zone is defined as area up to 100m around such premises as hospitals, educational institutions & courts. The silence zones are to be declared by a competent authority.
- 4. Mixed categories of areas should be declared as one of the four above-mentioned categories by the competent authority and the corresponding standard shall apply.

Authorized Signatory

TEST REPORT NO: ECO LAB/AN3/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT NOISE LEVEL

Name o	f the Company	: M/s Prism	Johnson Ltd.	
			lestone mines	
Address	s of the Company	: Village Ma	nkahari	
		Tehsil Ram	ipur Baghelan	
		District- Sa	tna(M.P.)	
Sample	Collected by	: Mr. Maan S	Singh	
Date of	Monitoring	; 11.11.2020	to 13.11.2020	
Instrum	ent Description	: Noise Mete	er (Make-HTC)	
Test Me	ethod	: IS: 4412, P	IS: 4412, Part-1 & 2, 1991	
Sl.	Locations	Day Time	Night Time	
No.		Leq Value in	n Leq Value in	
		dB(A)	dB(A)	
1.	Near Nar Nala Bridge	44.80	38.20	
2.	Near Medhi Mines Bound	ary 50.60	41.60	
	Pillar No28	50.00	41.00	
3.	Near Medhi Mines Bound	ary 54.30	48.20	
	Pillar No23	54.50	40.20	

Noise (Ambient Standard)

Area Code	Category of area	Limit in dB (A) Leq	
		Day Time	Night Time
А	Industrial Area	75	70
В	Commercial Area	65	55
С	Residential Area	55	45
D	Silence Zone	50	40

Note:

1. Day time is reckoned in between 6:00 AM and 10:00 PM.

2. Night time is reckoned in between 10:00 PM and 6:00 AM

- 3. Silence zone is defined as area up to 100m around such premises as hospitals, educational institutions & courts. The silence zones are to be declared by a competent authority.
- 4. Mixed categories of areas should be declared as one of the four above-mentioned categories by the competent authority and the corresponding standard shall apply.

Authorized Signatory

TEST REPORT NO: ECO LAB/AN4/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT NOISE LEVEL

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd . Village Mankahari Tehsil Rampur Baghelan District- Satna(M.P.)
Sample Collected by	:	Mr. Maan Singh
Date of Monitoring	:	11.11.2020 to 13.11.2020
Instrument Description	:	Noise Meter (Make:HTC)
Test Method	:	IS: 4412, Part-1 & 2, 1991

Sl. No.	Locations	Day Time Leq Value in dB(A)	Night Time Leq Value in dB(A)
1.	At AdiwasiTola	50.80	43.10
2.	At BaisanTola	47.50	37.80
3.	South Site of Working Pit	54.60	50.90
4.	Near Boundary Pillar No.64	55.30	49.50

Noise (Ambient Standard)

Area Code	Category of area	Limit in dB (A) Leq	
		Day Time	Night Time
А	Industrial Area	75	70
В	Commercial Area	65	55
С	Residential Area	55	45
D	Silence Zone	50	40

Note:

- 1. Day time is reckoned in between 6:00 AM and 10:00 PM.
- 2. Night time is reckoned in between 10:00 PM and 6:00 AM
- 3. Silence zone is defined as area up to 100m around such premises as hospitals, educational institutions & courts. The silence zones are to be declared by a competent authority.
- 4. Mixed categories of areas should be declared as one of the four above-mentioned categories by the competent authority and the corresponding standard shall apply.

Authorized Signatory

TEST REPORT NO: ECO LAB/AN5/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT NOISE LEVEL

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan
		District- Satna(M.P.)
Sample Collected by	:	Mr. Maan Singh
Date of Monitoring	:	12.11.2020 to 13.11.2020
Instrument Description	:	Noise Meter (Make:HTC)
Test Method	:	IS: 4412, Part-1 & 2, 1991

Sl. No.	Locations	Day Time Leq Value in dB(A)	Night Time Leq Value in dB(A)
1.	Village Badarkha	45.10	40.90
2.	Village Hinauta	48.60	37.90
3.	Village Chulhi	44.90	40.40
4.	Village Kulhari	44.30	38.50

Noise (Ambient Standard)

Area Code	Category of area	Limit in dB (A) Leq	
		Day Time	Night Time
А	Industrial Area	75	70
В	Commercial Area	65	55
С	Residential Area	55	45
D	Silence Zone	50	40

Note:

- 1. Day time is reckoned in between 6:00 AM and 10:00 PM.
- 2. Night time is reckoned in between 10:00 PM and 6:00 AM
- 3. Silence zone is defined as area up to 100m around such premises as hospitals, educational institutions & courts. The silence zones are to be declared by a competent authority.
- 4. Mixed categories of areas should be declared as one of the four above-mentioned categories by the competent authority and the corresponding standard shall apply.

Authorized Signatory

TEST REPORT NO: ECO LAB/AN6/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF WORK PLACE NOISE LEVEL

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan
		District- Satna (M.P.)
Sample Collected by	:	Mr. Maan Singh
Date of Monitoring	:	11.11.2020 to 13.11.2020
Instrument Description	:	Noise Meter (Make:HTC)
Test Method	:	IS: 4412, Part-1 & 2, 1991

Sl. No.	Locations	Noise Level dB(A)
1.	Kiln Unit-II	78.50
2.	Cement Mill Unit -II	72.60
3.	Near Railway Yard,	77.10
4.	Near Packing Plant	82.35

Authorized Signatory

anager (Q) ...

TEST REPORT NO: ECO LAB/AN7/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT NOISE LEVEL

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan District- Satna(M.P.)
Sample Collected by	:	Mr. Maan Singh
Date of Monitoring	:	11.11.2020 to 13.11.2020
Instrument Description	:	Noise Meter (Make:HTC)
Test Method	:	IS: 4412, Part-1 & 2, 1991

Sl. No.	Locations	Day Time Leq Value in dB(A)	Night Time Leq Value in dB(A)
1.	Near Site Office	55.80	43.35
2.	North side of mines pit	52.40	47.15
3.	South side of pit	49.60	44.20
4.	East side of pit.	44.70	40.80

Analyst

Authorized Signatory

lanager (Q) ...

Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/13

TEST REPORT NO: ECO LAB/AN1/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF NOISE LEVEL SURVEY

Name of the Customer	:	M/s Prism Johnson Ltd.
Address of the Customer	:	Village Mankahari
		Tehsil Rampur Baghelan
		District- Satna (M.P.)
Sample Collected by	:	Mr. Maan Singh
Date of Monitoring	:	11.11.2020 to 13.11.2020
Instrument Description	:	Noise Meter (Maske:HTC)

Sl. No.	Locations	Leq Value in dB(A)	Protective Measures Adopted
Doze	r-155 A		
1	Operator's cabin idle running	64.8	Ear muff provided
2	Operator's Cabin running on load	81.6	Ear muff provided
Pocla	in 300 CK		
3	Operator's cabin idle running	73.8	Ear muff provided
4	Operator's Cabin while loading	76.3	Ear muff provided
HAU	LPAK-PH 40		•
5	Operator's Cabin while being loaded	72.4	Ear muff provided
6	Operator's Cabin while hauling	74.5	Ear muff provided
7	Operator's Cabin unloading in the hopper of crusher	88.6 (For 20 Second)	Ear muff provided
8	Alarm (while Reversing of dumper)	102.0	Short Duration
ATL	ASCOPCODRILL		1
9	Operator's point while drilling	82.8	Ear muff provided
ROC	KBREAKER		
10	Operator's Cabin	73.5	Ear muff provided
HEA	VY BLASTING (INSTANTANEOUS)		·
11	Blasting shelter	102.2	Momentary
12	At safe zone	84.9	
AMB	IENT NOISE LEVEL DURING WOR	KING HOURS	
13	Office Campus, Mines workshop, Outfield (Haul Road)	72.8	-
14	Office Campus, Mines Workshop, Outfield (Haul Road) (at Night)	60.2	-

Analyst

Authorized Signatory

...

Confidential

CSIR - CENTRAL INSTITUTE OF MINING & FUEL RESEARCH (Council of Scientific & Industrial Research) Barwa Road, Dhanbad – 826 015

Report on

Study and advice for optimization of blast design parameters at Prism Cement Limestone Mine of M/s Prism Cement Limited to control ground vibration, air overpressure/noise and flyrocks within safe limits for the safety of houses/structures in the periphery of the mine when blasting is to be performed at 50 m and beyond

PROJECT NO.: CNP/4491/2016-17

FEBRUARY 2017

CSIR - CENTRAL INSTITUTE OF MINING & FUEL RESEARCH (Council of Scientific & Industrial Research) Barwa Road, Dhanbad – 826 015

REPORT ON

Study and advice for optimization of blast design parameters at Prism Cement Limestone Mine of M/s Prism Cement Limited to control ground vibration, air overpressure/noise and flyrocks within safe limits for the safety of houses/structures in the periphery of the mine when blasting is to be performed at 50 m and beyond

BY

Dr. M. P. Roy,	Principal Scientist & Project Leader
Dr. C. Sawmliana,	Principal Scientist
Shri Vivek K Himanshu,	Scientist
Shri R. S. Yadav,	Sr.Technical Officer
Shri P. Hembram,	Technical Assistant
Dr. P. Pal Roy,	Outstanding Scientist & HORG
Dr. P. K. Singh,	Director

PROJECT NO.: CNP/4491/2016-17

FEBRUARY 2017

NOTE

This report is meant for internal use of the sponsor of the study and it should not be published in full or part by the sponsor. It should not be communicated or circulated to outside parties except concern departments. However, CSIR-CIMFR reserves the right to publish the results of investigation for the benefit of the mining industry.

The recommendations are based on the results of investigation carried out at Prism Cement Limestone Mine of M/s Prism cement Limited. It is hoped that the recommendations will be implemented to get optimum results without hampering production, productivity and safety of the mine. The recommendations are guidelines, which should be implemented in letter and spirit.

Since, the day-to-day blasting operations are not in the control of CSIR-CIMFR, the research team will not be held responsible for any untoward incident caused due to blasting.

SIGNATURE OF THE PROJECT PROPONENTS

Mura K

(Dr. M. P. Roy) Principal Scientist Project Leader

Pal Roy

(Dr. P. Pal Roy) \ Outstanding Scientist & HORG Project Co-ordinator

CSIR-CIMFR AUTHORISED SIGNATORIES

(Dr. V. K. Kalyani) Sr. Principal Scientist & HOS Project Monitoring & Evaluation Cell

(Dr. R. V. K. Singh) Chief Scientist & HORG Business Development & industrial Liaison

Contents

Page	Nos.

Executive summary	1
1. Introduction	3
2. Location and geology	3
3. Instrumentations	3
4. Blasting details	4
5. Analyses of recorded vibration data	5
5.1 Frequency of blast vibration	6
5.2 Structural responses to ground vibration and their natural frequencies	9
6. Existing vibration standard and criteria to prevent damage	10
7. Air over-pressure/Noise	10
8. Flyrocks	11
9. Recording of in-the -hole velocity of dctonation (VOD) of explosives	11
10. Blast delay optimization with the help of signature blast	12
11. Human response to blasting	14
12. Results and discussions	14
13. Conclusions and recommendations	15
Acknowledgement	16
Annexure	

EXECUTIVE SUMMARY

This report relates to the study conducted by CSIR-Central Institute of Mining & Fuel Research (CIMFR), Dhanbad to study and advice for optimization of blast design parameters at Prism Cement Limestone Mine of M/s Prism Cement Limited, Satna to control ground vibration within safe limits for the safety of structures in the periphery of the mine with improved production and productivity. The study involved trials with varying blast designs and charging patterns, monitoring of ground vibration, air over-pressure/noise at various locations in the periphery of the mines. The ejections of flyrock from blasting operations were also monitored. The results of investigation, analyses of data and recommendations, made thereof, are summarised below:

- Fifteen blasts were conducted at different benches of the Prism Cement Limestone Mine of M/s Prism Cement Limited, Satna and 60 blast induced ground vibration data were recorded in the periphery of the mine.
- Maximum vibration recorded from production hole blast was 31.0 mm/s at 50 m. The blast was conducted at 15 no. Goyal face of Prism Cement Limestone Mine. The total explosive weight and explosive weight per delay were 710 kg and 50 kg respectively.
- The maximum air over-pressure was recorded from the blast conducted at 15 no. Goyal face on 26.12.16. The recorded air over-pressure was 137.8 dB(L) at 100 m distance from face. In this blast, explosives detonated in a blasting round and explosives weights per delay were 1125 and 75 kg respectively.
- There was no ejection of flyrock in any of the blast. The blasts were initiated with Nonel initiating system and electronic initiation system from the bottom of the hole and experimented blast designs ensured non-ejection of flyrocks.
- All the recorded vibration data were well within the safe limit at the houses/structures concerned. The dominant peak frequencies of ground vibrations were in the range of 11.4 to 129 Hz. FFT analysis of blast vibration frequencies confirmed that concentration of frequencies is in band of 13.3 40.3 Hz. So, the safe level of vibration has been taken as 10 mm/s for the safety of houses/structures of the surrounding villages as per DGMS standard.
- Propagation equation for the prediction of blast vibration has been established and is given as Equation 1. The permissible explosive weight per delay may be computed from the Equation to maintain vibration within safe limit for distances of houses/structures concerned. For convenience, the recommended explosive weight per delay has been computed and is given in Table A3.

- Attempts were made to record the vibration from 50 to 250 m in most of the blasts and accordingly the explosives to be detonated in the delay and total amount of explosives to be fired has been computed and is given in the text in view of future blasting operations at 50 m and beyond.
- The delay interval between the holes in a row should be 17 ms whereas between the rows, it should be 65 ms or more depending upon the number of rows and effective burden. If the numbers of rows are more than two, the delay interval between rows should be increased by 15% in successive rows.
- It is recommended that the existing Nonel initiation system should be continued in the blasting operations. The sub-grade drilling should be 0.3 to 0.5 m for a blasthole depth of 6 to 7 m and should be initiated from the bottom of the hole.
- The recommended blast designs should be followed for day-to-day blasting operations for safe and efficient blasting operations. The blast designs Annexure as Figures A1-A2, will also ensure the safety of the houses/structures, life of human beings and other property in the periphery of the mine.

1. Introduction

The Joint President- Commercial of M/s Prism Cement Limited entrusted CSIR-Central Institute of Mining & Fuel Research (CIMFR), Dhanbad, vide letter no. PCL/LOI/16-17/CIMFR/365 dated 06.12.2016 for a scientific study and advice for optimization of blast design parameters for deep hole blasting at Prism Cement Limestone Mine of M/s Prism Cement Limited, Satna to control ground vibration within safe limits for the safety of structures in the periphery of the mine with improved production and productivity.

The Rock Excavation Engineering (erstwhile Blasting Department) Research team of CSIR-Central Institute of Mining & Fuel Research, Dhanbad carried out field investigations during December 21-26, 2016. Altogether, fifteen blasts were conducted and blast induced ground vibration & air over-pressure/noise were monitored at various locations in the periphery of the Prism Cement Limestone Mine of M/s prism Cement Limited. The monitoring locations were back-side of the blast free face and in the left flank of the blast free face.

2. Location and geology

The Prism Cement Limestone Mine is situated at about 15 km North-East of Satna railway station. The mining lease area lies between longitude 80°57'31" to 80°58'28" East and Latitude 24°36'47" to 24°37'16" North. The limestone deposit of the mine falls in the Bhander series of Upper Vindhyan System and is Upper Vindhyan in age. The general topography of the area is without any remarkable relief and forms a more or less flat terrain with a general dip of approximately 2°- 6° towards South between S10°W and S5°E. The area is completely devoid of any forest and the topographic elevation varies from 312 m (north direction) to 300 m (south direction) above MSL.

The limestone deposit in the mine occurs in two horizontal bands separated by a shaley limestone. The Vindhyan formations are broadly classified into lower calcareous and an upper arenaceous facies. The Bhander limestone varying in thickness from about 5 to 15 m lies as a calcareous horizon in the upper arenaceous rocks. The Bhander Limestone deposit of the area is the dominant rock type and overlain by Sirbu shale (0 - 2 m thick). It is widely jointed with two sets of joints along and across strike. The overview of the Prism Cement Limestone Mine is presented in Photograph 1.

Photograph 1. The overview of Prism Cement Limestone Mine of M/s Prism Cement Limited.

3. Instrumentations

Blast induced vibrations were monitored by seismographs namely MiniMate Plus, MiniMate Blaster and MiniMate DS-077 (Made in Canada by M/s Instantel Inc.). MiniMate plus are eight as well as four channel seismographs provided with two/one tri-axial transducer(s) for monitoring vibration (in mm/s) and two/one channel(s) for monitoring air over-pressure/noise in dB(L). MiniMate Blaster and MiniMate DS-077 are four channel seismographs provided with one tri-axial transducer for monitoring vibration (in mm/s) and one channel for monitoring of air over-pressure/noise in dB(L). All the seismographs record vibration in three directions i.e. Longitudinal (L), Vertical (V) and Transverse (T). They also record principal frequency of vibration and compute the peak vector sum of the vibration.

Explosives and delay detonators must provide the energy and timing for the blasts used under specific blasting conditions. The DataTrapII data/VOD recorder of M/s MREL, Canada is used to document the VOD performance of the explosives and delay time of delay detonators during blasts to compare the actual VOD and delay time results to the published specification.

4. Blasting details

Fifteen blasts including fourteen production blasts and one signature hole blast were conducted on different benches of Prism Cement Limestone Mine. The number of blast holes detonated in production blasting varied from 14 to 84. The diameters of deep blast holes were 115 mm. The depth of blast holes varied from 2.5 to 6 m and the explosives loaded in a hole varied from 2.8 to 35 kg. The explosives weight per delay ranged between 2.8 to 96 kg. Total

explosive weight detonated in a round of production blast varied between 58.4 and 2678 kg. Out of fifteen trial blasts five were conducted using Nonel initiation system and rest 10 were blasted with the help of electronic initiation system. The vibration measuring distances varied from 50 to 250 m. Details of blast design parameters experimented during the period of investigation are given in Annexure as Table A1.

Vibrations were monitored in terms of peak particle velocity (PPV) that varied from 0.73 mm/s to 31.0 mm/s in case of production blast depending upon the distance of measuring transducers of seismographs from the blasting face and the amount of explosives detonated in particular delay of the blast. The recorded levels of air over-pressure ranged from 110.2 - 137.8 dB(L). Recorded blast induced ground vibrations and air over-pressure are presented in Annexure as Table A2.

The blast movement and ejection of rock, if any, were monitored for each blast. There was no ejection of flying fragments. Precaution was taken by using blasting mate on the blastholes. Photograph 2 depicts the charging of the 15 no. RPL bench and use of blasting mate at 7050 RIL blast face to prevent flyrock.

Photograph 2. The charging of the 15 no. RPL bench and use of blasting mate at 7050 RIL blast face to prevent flyrock.

5. Analyses of recorded vibration data

Ground vibrations data recorded were grouped together for statistical analysis. An empirical relationship has been established correlating the maximum explosive weight per delay (Q_{max} in kg), distance of vibration measuring transducers from the blasting face (R in m) and recorded peak particle velocity (v in mm/s). The established equation for the mine is:

$$v = 200.34 * \left(\frac{R}{\sqrt{Q_{\text{max}}}}\right)^{-1.126}$$
 (1)

Correlation co-efficient = 87.8 %

Where,

v = Peak particle velocity (mm/s) R = Distance between vibration monitoring point and blasting face (m) $Q_{max} =$ Maximum explosive weight per delay (kg)

The above equation is site specific and applicable only for Prism Cement Limestone Mine. It may be used to compute the maximum explosive weight to be detonated in a delay for distances of concern from the blasting site. The regression plot of vibration data recorded at their respective scaled distances is presented in Figure 1.

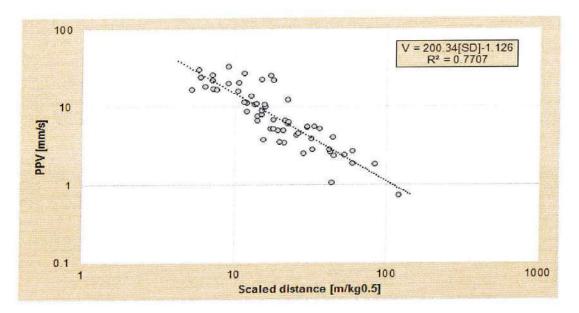


Figure 1. Regression plot of recorded PPV with their respective scaled distances.

5.1 Frequency of blast vibration

The dominant peak frequencies of ground vibrations recorded were in the range of 11.4 - 129 Hz whereas the most common range lies between 13.3 to 40.3 Hz. Most of the vibration measuring stations were on compact ground surfaces. The dominant peak frequency recorded at corresponding monitoring locations is presented in Figure 2. The blast wave signature recorded at Shankkar Ji temple of Hinauti village (Distance - 200 m; PPV – 5.29 mm/s) from the blast conducted at New Pit 01 bench of Prism Cement Limestone Mine is depicted in Figure 3 and its Fast Fourier Transform (FFT) analysis of frequency is shown in Figure 4. The blast wave signature recorded at the house of Shri Umesh Prasad from the blast conducted at 15 No. Goyal face bench is shown in Figure 4. Fast Fourier Transform (FFT) analysis of frequency of the vibration signature is presented in Figure 5. The Fast Fourier Transform (FFT) analysis of frequency vibrations recorded in blasting. The view of blast vibration monitoring in the periphery of the mine are shown in Photographs 3.

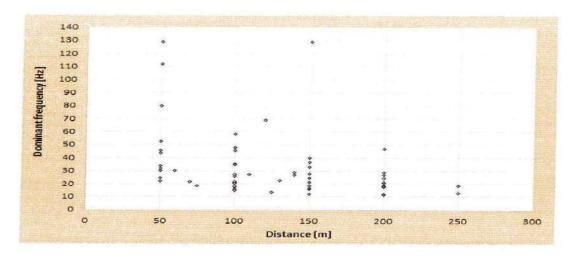


Figure 2. Plot of dominant frequency with respect to respective distances.

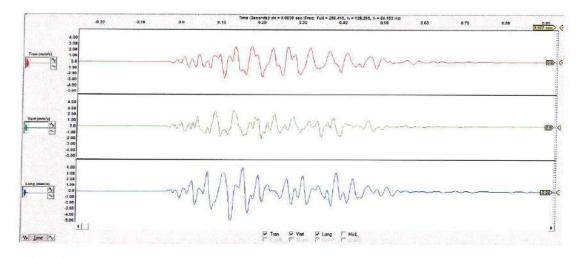


Figure 3. Blast wave signature recorded at Shankarji temple of Hinauti village from the blast conducted at New Pit 01 blastface of Prism Cement Limestone Mine.

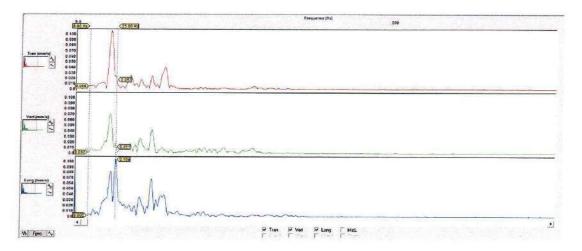


Figure 4. FFT analyses of frequencies of vibration presented in Figure 3.

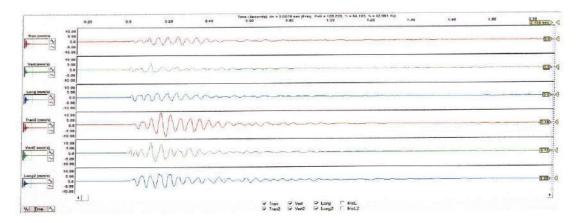


Figure 4. Blast wave signature recorded on the ground surface and roof of the house of Shri Umesh Prasad from the blast conducted at 15 No. Goyal face bench of Prism Cement Limestone Mine.

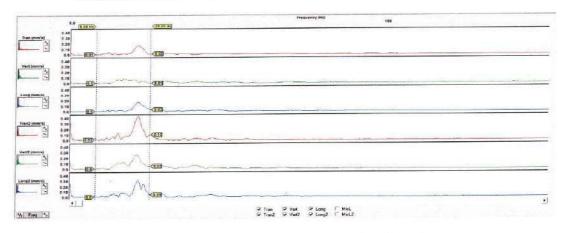
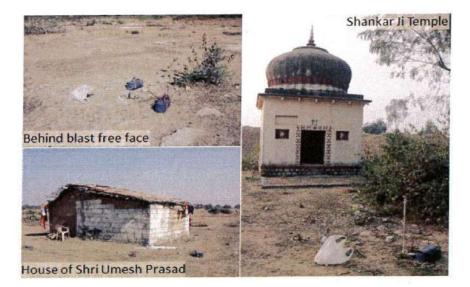



Figure 5. FFT analyses of frequencies of vibration presented in Figure 4.

Photograph 3. Monitoring of blast vibration at different locations in the periphery of the Prism Cement Limestone Mine.

5.2 Structural responses to ground vibration and their natural frequencies

The real cause of why people complain about blasting is structural response. All blast vibration complains is due to how much the house shakes, not how much the ground shakes. The ground motion resulting from blast induced waves is transmitted to the structure upside through the foundation, which causes the structure to vibrate. There are three factors of ground vibrations that determine how much structure vibrates. They are ground vibration amplitude, ground vibration duration and ground vibration frequency.

The responses of a few structures in the periphery of the mine was monitored. The recorded natural frequencies of the house of Shri Umesh Prasad was 21.3 Hz. The incoming blast vibration has frequency in the range of natural frequency of the houses and resonance occurred, the resultant amplitude of the vibration in the houses got amplified. The maximum amplification were recorded when incoming blast wave has dominant frequency very close to the natural frequency of the house. The process involved in determination of natural frequency is shown in Figure 6.

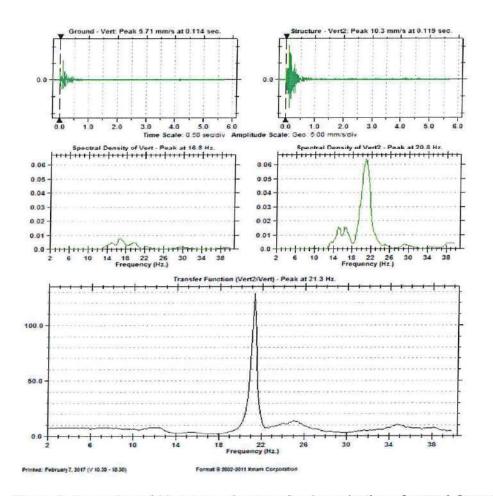


Figure 6. Processing of blast wave signature for determination of natural frequency of the house of Shri Umesh Yadav.

6. Existing vibration standard and criteria to prevent damage

Peak particle velocity (PPV) has been globally used in practice for assessment of blast induced damage to the structures. Different countries adopt different standards depending on their type of industrial/residential buildings. In India, presently DGMS technical circular 7 of 1997 is considered as vibration standard for the safety of surface structures in mining areas. The DGMS standard is given in Table 1.

Type of structure	Dominant	excitation free	quency, Hz
-	< 8 Hz	8-25 Hz	> 25 Hz
(A) Buildings/structures not belong to the owner	6		
1. Domestic houses/structures (Kuchcha, brick & cement)	5	10	15
2. Industrial buildings	10	20	25
3. Objects of historical importance and sensitive structures	2	5	10
(B) Buildings belonging to owner with limited sp	an of life		
1. Domestic houses/structures	10	15	25
2. Industrial buildings	15	25	50

Table 1. DGMS technical circular 7 of 1997 concerning to blast vibration standard in mm/s.

7. Air over-pressure/noise

Air overpressure in the mining or quarrying context is the superposition of a number of impulsive air pressures as a result of the detonation of explosive in the ground. Air overpressure can be measured in pressure unit as well as sound pressure level (SPL).

SPL (dB) = 20 log (p/p_o) Where, p = measured over-pressure in Pascal (pa) $p_o = reference pressure level of the lowes$

 p_o = reference pressure level of the lowest sound that can be heard, i.e., zero dB = 2 x 10⁻⁵ pa.

United State Bureau of Mines (USBM) has correlated the damage due to air over-pressure. The recommended values are given below:

Over-pressure (dB)	Over-pressure (KPa)	Air Blast Effects
177	14	All windows break
170	6	Most windows break
150	0.63	Some windows break
140	0.20	Some large plate glass windows may break, desk and windows rattle
136	0.13	USBM interim limit for allowable air blast
126	0.05	Complaints likely

The maximum level of air over-pressure recorded was 137.8 dB(L) at 100 m due to blasting at 15 no. Goyal Face bench of Prism Cement Limestone Mine. In this blast 45 blastholes were loaded with 1125 kg of explosives and were fired with the explosives weight per delay of 50 kg. The threshold level of air over pressure/noise is 136 dB(L) as per USBM standard.

8. Flyrocks

Flyrocks are the undesirable ejection of rock particles projected beyond the normal blast area. It is generated when there is insufficient stemming, too much explosive energy for a fixed amount of burden, or poor delay timing pattern, or explosives loaded in voids, mud seams.

The primary means of controlling flyrocks is through proper blast design and optimum delay timing between two detonations. Any pattern which over-confines the explosives or one with insufficient stemming tends to cause material to be thrown up in the air rather than allowing any horizontal movement. None of the blasts ejected flying fragments. The detonation of blast was very ideal and achieved blasting face was without back breaks in most of the time. It is recommended to use blasting mate in sensitive areas for control of flyrock. It was demonstrated and experiment that stemming to burden ratio of 0.7 or more did not cause ejection of flying fragments. Hence, to reduce the generation of boulders from the top portion of the face, stemming length should be 0.7 times of burden.

9. Recording of in-the-hole Velocity of Detonation (VOD) of explosives

The performance of explosives depends upon a number of parameters and VOD is one of the important parameters. The detonation pressure associated with the reaction zone of detonating explosives is directly proportional to the square of its VOD. It is measured in the C-J plane, behind the detonation front, during propagation through the explosives column. The detonation pressure (P_d) can be estimated by the following formula.

$$P_d = \frac{1}{2} \rho_e (VOD)^2 10^{-6}$$

Where, P_d = Detonation pressure (MPa) ρ_e = Density of explosive (kg/m³) VOD = Velocity of detonation (m/s)

Uniform VOD is essentially required throughout the blast holes in the rock formations in order to produce sufficient detonation pressure to the borehole walls. Required booster is provided in the explosives column to maintain the VOD for the uniform breakage of rock. Inthe-hole continuous velocity of detonation of explosives was recorded with the help of DataTrap II. The recorded in-the-hole VOD of site mixed emulsion (SME) explosives of M/s Indian Explosives Limited (Orica) was in the range of 5286.8 – 5399.7 m/s (Figure 7 & 8).

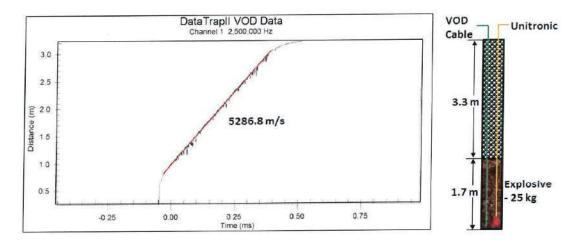


Figure 7. Trace of in-the-hole VOD of SME explosives of M/s Indian Explosives Limited.

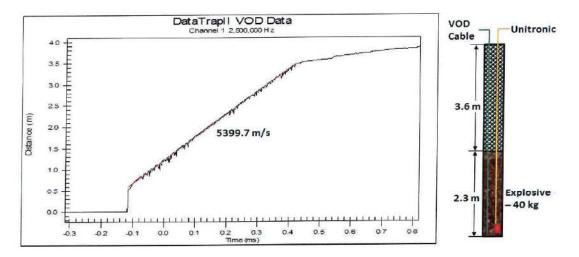


Figure 8. Trace of in-the-hole VOD of SME explosives of M/s Indian Explosives Limited.

10. Blast delay optimisation with the help of signature blast

The optimum blasts have the following objectives.

- Adequate rock fragmentation, swelling and displacement
- Control over the flyrocks and over breaks
- Minimum level of vibration and air blasts

The delay timing between the holes in a row and between rows plays fundamental role in fulfilment of these objectives. To address this issue a blast hole was drilled at 15 No. RPL bench. The blasthole was loaded with 30 kg of explosives and fired instantaneously without in-hole delay. The blast wave signatures were recorded at interval of 50 m at 2 locations. The attenuation characteristics of blast wave were documented. The typical time history of blast wave signature recorded at 50 m from the blast hole is presented in Figure 9. The frequency spectra of the signature blast was analysed. Linear superposition of the waves were done to simulate the waveform characteristics for multi-hole blasting. The analyses revealed that very

short delay times between the holes and very long delay intervals between the rows should be avoided. The analyses further concluded that the mean time needed to start the movement of rock face is 6.4-7.5 ms/m of effective burden. The delay interval between the successive rows should be 13.5-28.5 ms/m of effective burden. The blast designs were optimised considering the out put of linear superimposition techniques. The signature hole analyses table of blast is depicted in Figure 10. The recommended blast designs on the basis of the analyses are given in Annexure.

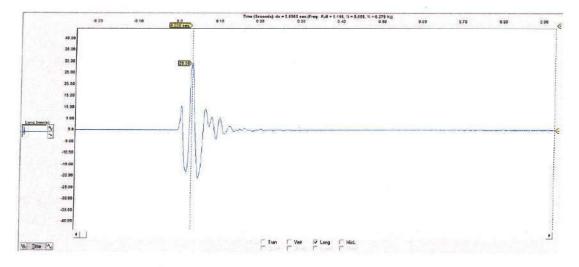


Figure 9. Time history of the signature blast in Longitudinal direction.

File	B	last T	mina	F	eak Partic	le Velocih	1	PVS	100000	Dominant F	FT Freque	ncu	lle	per/Lower	Fraguencu	Batio
[Double Click to view]	Dec	k Hol	e Row v Delav	Trans	Vert	FUARD LANCE	Peak	Peak	Trans	Vert		Peak	-			
			c (msec	(mm/s)	(mm/s)	Long [mm/s]		Sun T	(Hz)	(Hz)	Long (Hz)	(Hz)	Trans	Vert	Long	Peak
201H16R100.8WP	1	16		19.70	18.40	22.70	22.70	26.50	61.4	61.5	59.3	61.5	0.202	12.000	0.194	12.000
2D1H16R125.BWP	1	16	125	20.50	18.40	23.40	23.40	26.90	63.6	64.1	24.9	64.1	0.251	11,400	0.239	11.400
2D1H16R130.8WP	1	16	130	21.00	19.10	23.30	23.30	27.50	61.4	62.3	61.3	62.3	0.065	3.660	0.068	3.660
R2D1H16R95.BWP	1	16	95	19.80	20.60	24.30	24.30	28.00	63.0	63.3	62.6	63.3	0.061	3.020	0.053	3.020
201H12R125.8WP	1	12	125	14.90	22.50	20.50	22.50	28.60	32.6	80.1	32.4	80.1	1.110	47.100	0.979	47,100
R2D1H12R70.BWP	1	12	70	13.00	24.10	20.50	24.10	28.60	2.0	84.8	31.5	84.8	0.247	10.500	0.218	10.500
2D1H12R120.BWP	1	12	120	13.30	23.10	25.00	25.00	28.80	33.8	83.1	33.3	83.1	0.823	30.600	0.703	30.600
R2D1H12R75.BWP	1	12	75	12.90	25.70	20.50	25.70	28.80	2.0	80.4	24.1	80.4	1.060	44.900	0.960	44.900
201H12R115.8WP	1	12	115	14.40	23.30	23.80	23.80	30.50	35.0	78.5	34.4	78.5	3.550	98.100	3.370	98.100
R2D1H8R45.8WP	1	8	45	12.80	14.70	30.30	30.30	30.50	2.0	2.9	27.4	27.4	0.020	1.030	0.014	1.030
12D1H16R55.8WP	1	16	55	19.50	18.60	26.10	26.10	30.70	58.9	68.5	57.3	68.5	0.129	4.870	0.130	4.870
12D1H16R60.BWP	1	16	60	26.60	26.20	22.00	26.60	31.10	64.5	65.1	35.3	65.1	0.198	9.600	0.186	9.600
2D1H12R105.8WP	1	12	105	13.00	23.40	25.70	25.70	31.50	37.0	85.4	20.1	85.4	0.261	11.500	0.239	11.500
2D1H12R110.BWP	1	12	110	14.10	23.00	26.20	26.20	31.90	36.1	81.6	35.5	81.6	1.050	43.200	0.948	43.200
2D1H12R130.8WP	1	12	130	13.30	23.40	26.10	26.10	32.80	37.6	84.3	22.8	84.3	0.247	11.100	0.224	11.100
2D1H12R65.BWP	1	12	65	20.70	22.50	26.40	26.40	32.90	32.9	78.5	32.3	78.5	0.614	26.900	0.551	26.900
2D1H16R70.BWP	1	16	70	20.20	18.40	29.10	29.10	33.10	59.4	60.0	27.1	60.0	0.063	4.020	0.056	4.020
2D1H8R100.8WP	1	8	100	13.90	14.50	31.80	31.80	33.10	30.3	129.0	30.0	129.0	0.024	1.390	0.023	1.390
2D1H8R105.8WP	1	8	105	15.00	13.90	31.80	31.80	33.10	29.1	124.0	29.1	124.0	0.008	0.602	0.010	0.602
2D1H9R110.8WP	1	9	110	14.60	14.30	31.90	31.80	33.10	29.0	129.0	29.0	128.0	0.035	2.090	0.031	2.090
2D1H8R115.BWP	1	8	115	15.30	13.40	31.90	31.90	33.10	34.4	130.0	26.9	130.0	0.133	13,700	0.136	13,700
2D1H8R120.8WP	1	8	120	14.40	13.50	31.80	31.80	33.10	32.9	125.0	32.5	125.0	0.029	1.140	0.021	1.140
2D1H8R130.BWP	1	8	130	14.20	13.80	31.80	31.80	33.10	30.8	130.0	30.6	130.0	0.007	0.507	0.009	0.507
R2D1H8R80.BWP	1	8	80	13.90	16.10	31.70	31.70	33.10	35.8	126.0	26.9	126.0	0.022	2.020	0.027	2.020
R2D1H8R85.8WP	1	8	85	13.90	16.30	31.80	31.80	33.10	34.4	129.0	33.5	129.0	0.140	5.050	0.122	5.050

Figure 10. Signature hole analysis for the blasthole on 15 no. RPL Site of Prism Cement Limestone Mine.

11. Human response to blasting

The tolerance and reactions of human beings to vibrations are important when standards are based on annoyance, interference, work proficiency and health. Human beings notice and react to blast induced vibrations at levels that are lower than the damage thresholds.

It is impossible to establish a vibration level where nobody will complain. There are always some persons in a population who will complain no matter how small the disturbance is. Several researchers recognized that the duration of the vibration was critical. Most evident was that a higher level could be tolerated if the event was of short duration. Consequently, steady state vibration data could not be realistically applied to blasting except for events that exceed several seconds duration.

12. Results and discussions

The maximum vibration recorded from the production blasts in terms of peak particle velocity (PPV) was 31.0 mm/s at 50 m on the ground surface behind the blasting face. The associated dominant peak frequency was 32.0 Hz. This magnitude of vibration was due to detonation of 710 kg of explosives in 28 holes drilled in three rows and fired with maximum charge weight per delay of 50 kg. The PPV recorded at 100 m from the same blast was 6.66 mm/s with dominant peak frequency of 15.0 Hz. Fast attenuation of ground vibration is recorded.

The vibrations recorded in the periphery of the mine were of low amplitude and short duration. The persistence of vibration was in most of the cases less than 1 second. A few recorded blast waveforms at different locations are given in the Annexure which indicates low amplitude and short duration blast events. The existing practice of blasting will not cause any damage to the houses and structures in the periphery of the mine.

The signature hole blast was conducted and ground vibration was recorded at a distance of 50 and 100 m. The ground vibration recorded at 50 m was 33.9 mm/s with dominant peak frequency of 30.3 Hz. The signature hole was of 5 m and charged with the 30 kg of explosive. Ground vibration recorded at 100 m was 22.1 mm/s with dominant frequency of 45.5 Hz. The analyses revealed that very short delay times between the holes and very long delay intervals between the rows should be avoided. The analyses further concluded that the mean time needed to start the movement of rock face is 6.4-7.5 ms/m of effective burden. The delay interval between the successive rows should be 13.5-28.5 ms/m of effective burden.

The dominant peak frequencies of vibrations recorded were in the range of 11.4 to 129 Hz. The FFT analyses of frequency of vibration revealed that the concentration of vibration energy is in the range of 13.3-40.3 Hz. Based on DGMS circular; the safe limit of vibration (PPV) for the houses of surrounding villages is thus, 10 mm/s. The maximum explosives to be fired in a delay for safety of residential houses at various distances from the blasting site

may be computed from the Equation 1. For ready references, the maximum permissible explosive weight per delay to be detonated in blast round has been computed and is Annexured as Table A3. The predicated PPV levels at various distances by detonation of explosives weight per delay of 10, 20, 30 and 50 kg are presented in Table A4.

The maximum air over-pressure recorded was 137.8 dB(L) at 100 m due to the blast conducted at 15 No. Goyal Face on 26.12.2016 by detonation of 1125 kg of explosives in 45 holes. The blasts initiated with Nonel initiation system and Unitronic electronic initiation system generate significantly lower level of air over-pressure compared to detonating fuse initiation system. There was no ejection of flyrock in any of the blasts.

The recorded vibration and air over-pressure data and subsequent analyses revealed that blasting might be performed at 50 m from the nearest house of the village with explosives weight per delay of 12.2 kg. The blast designs have been recommended for blasting operations to be conducted at 50 m and beyond from the nearest house of the concern villages or other structures. The recommended blast designs are given as Figures A1-A2. The recommended explosive weights per delay for various distances of the concern up to 300 m are computed and are presented in Table A3. The predicted peak particle velocities levels for detonation of various charge weight per delay are given in Table A4.

There were no ejections of flyrocks in any of the blast. The experimented blast designs ensured that there were no any ejections of flyrocks, although for more safety, blasting mates with sand bags were used for controlling the flyrocks.

13. Conclusions and recommendations

- Maximum vibration recorded from the production blast was 31.0 mm/s with associated dominant peak frequency of 32.0 Hz at 50 m from blasting site. The explosives weight per delay was 50.8 kg. The PPV recorded at 100 m from the same blast was 6.66 mm/s with dominant peak frequency of 15.0 Hz. Fast attenuation of vibration were encountered.
- The maximum air over-pressure recorded was 137.8 dB(L) at 100 m due to the blast conducted at 15 No. Goyal Face on 26.12.2016. In this blast, explosives detonated in a blasting round and explosives weight per delay were 1125 kg and 75 kg respectively. The Electronic initiation system and Nonel initiation system reduces the air over-pressure to a greater extent and improves the blasting performance too. There was no ejection of flyrocks in any of the blast.
- All the recorded data (blast vibrations, air overpressures and flyrocks) were well within the safe limit at the houses/structures concerned. The dominant peak frequencies of ground vibrations were in the range of 11.4 to 129 Hz. FFT analysis of blast vibration frequencies confirmed that concentration of frequencies is in band of 13.3-40.3 Hz. So, the safe level of vibration has been taken as 10 mm/s for the safety of houses/structures of the surrounding villages as per DGMS standard.

- Propagation equation for the prediction of blast vibration has been established and is given as Equation 1. The permissible explosive weight per delay may be computed from the Equation to contain vibration within safe limits for distances of houses/structures concerned. For convenience, the recommended explosives weight per delay has been computed and is given in Table A3.
- The delay interval between the holes in a row should be 17 ms whereas between the rows, it should be 65 ms or more depending upon the number of rows and effective burden. If the numbers of rows are more than two, the delay interval between rows should be increased by 15% in successive rows.
- It is recommended that the existing Nonel initiation system should be continued in the blasting operations and Electronic initiation systems should be practiced on the benches near to the structures for more precise and accurate delay design. The sub-grade drilling should be 0.3 to 0.5 m for a blasthole depth of 6 to 7 m and should be initiated from the bottom of the hole.
- It is advisable to use blasting mate with sand bags in sensitive area to ensure any nonejection of flyrocks. For this Nonel as well as electronic system may be used as an initiation system.
- The recommended blast designs should be followed for day-to-day blasting operations for safe and efficient blasting operations. The blast designs given in Annexure as Figures A1-A2, will ensure the safety of the houses/structures, life of human beings and other property in the periphery of the mine.

Acknowledgements

The research team is thankful to M/s Prism Cement Limited for sponsoring the study. The sincere co-operation and help extended to the team by the following officials in completing the study successfully are thankfully acknowledged.

Shri S. K. Sinha,	Vice President
Shri Sanjay Singh Baghel,	Manager (Mines)
Shri Chandrakand pandey,	Asst. Manager
Shri Binod Giri,	Asst. Manager
Shri A. K. Baghel,	Blasting Foreman
Shri S. Singh,	Field Surveyor

The research team also expresses their gratitude to the inhabitants of Hinauti and Sijhata villages for their co-operation in blast vibration and air overpressure monitoring.

 Chocked face. Free face was not available. 	420 (Booster Primex and SME	25-30	3.3 - 3.5	3×3.5	5.5-6	611	14	Hinauti	20.12.10	:
 Chocked face. No ejection of flyrock. Unitronic 	(Booster Primex and SME & No ejectic explosives of M/s IEPL Orica) & Unitronic	Ľ	ı i		1		-	New Dit 01	23 12 16	7
 No ejection of flyrock. Unitronic (Orica) 		20	2-25	3×4	5-6	115	66	20 No. Pit	23.12.16	6.
 Very good movement towards free face. Excellent Fragmentation. 	(Booster Primex and SME explosives of M/s IEPL Orica) Excellent Fragmentation.	20-25	2.8 - 3	3×3.5	4-5	115	Ţ	Site	20.12.10	5
 No fly rock ejection. Unitronic (Orica). VOD was measured 	 explosives of M/s IEPL Orica)						2	15 No DDI	21 01 20	א
 Very good movement towards free face. 	30 (Booster Primex and SME	30	2.7	Burden - 3 m	S	115	10	Site	23.12.10	:
 Over tragmentation No ejection of flyrock Good fragmentation Unitropic (Opice) 	(Booster Primex and SME Good fragmentation of fly) (Booster Primex and SME Good fragmentation of fly)	22	3	3×3.5	4.5	115	20	15 No. Goyal Fcae	22.12.16	₽ .
 No ejection of flyrock Nonel (TLD – 17 ms, 42 ms, DTH – 450 ms) 	1037 (Solargel Cartridge & Solar Prime Booster)	C.UC	1.0					Face	5	د
 Precaution was taken with blasting mate placement to prevent fly rock ejection. Boulder formation was there. No ejection of flyrock. 	tridge & Booster)	20 4	16	۲×۲ ۲×۳	6	1115	34	Goyal Face 7050 RIL	21.12.16	2.
Remarks	Total explosive Weight [kg]	Avg. explosive Per hole [kg] 5.6	Top Stemm- ing [m]	Burden × Spacing [m] 3×3.5	Hole depth [m] 3	Hole. dia. [mm] 115	No. of holes 30	Blast 15 No.	Blast 21.12.16	I. No.

Table A1. Summary of blast performed during the period of study at Prism Cement Limestone mine, Prism Cement Limited, Satna (M.P.).

17

5	14.	14 13.	12.	5	I	- 9. - 9.	.00
20.12.10	20.12.16	26.12.16	25.12.16		24.12.16	24.12.16	24.12.16
Goyal Face	IS No. Goyal Face	15 No. Goyal Face	15 No. RPL	Goyal Face	Goyal Face	15 No. Goyal Face	15 No. RPL Site
45	21	28	84	2	12 05	20	40
115	115	115	115			115	115
6	ω	ر م	6	4.5	3 5	5.5	6
2.5×3	3×4	3×4	3×3.5	ບ ບ	رد×د ۱×3 ک	3×3.5	3×3.5
2.4	2.6	ω.	3.5	2:3 - 3	1.7	3.6	3.5
25	2.78	25	32	14.7 - 20	5.4	22	35
1125 (Solargel Cartridge & Solar Prime Booster)	58.4 (Solar Prime Booster)	710 * No ejectic (Booster Primex and SME * Good frag explosives of M/s IEPL Orica) * Unitronic	2678	 603 Chocked face (Booster Primex and SME No ejection of flyroc Good fragmentation Nonel (TLD – 17 m: DTH – 450 ms) 	113 (Solargel Cartridge & Solar Prime Booster)	440 No ejectic (Booster Primex and SME Good frag explosives of M/s IEPL Orica) Unitronic	explosives of M/s IEPL Orica) No ejection of flyrock. 1405 VOD Measurement. (Booster Primex and SME No ejection of flyrock. explosives of M/s IEPL Orica) Unitronic
 No ejection of flyrock Excellent fragmentation Nonel (TLD – 17 ms, 42 ms, DTH – 450 ms) 	 No ejection of flyrock Nonel (TLD – 17 ms, 42 ms, DTH – 450 ms) 	 No ejection of flyrock Good fragmentation Unitronic 	 No ejection of flyrock Good fragmentation Unitronic 	 Chocked face No ejection of flyrock Good fragmentation Nonel (TLD – 17 ms, 42 ms, DTH – 450 ms) 	 No ejection of flyrock Good fragmentation Unitronic 	 No ejection of flyrock. Good fragmentation Unitronic 	 No ejection of flyrock. VOD Measurement. No ejection of flyrock. Unitronic

Blast No.	Location of Blast	Total Explosives	Maximum Explosives	Location of measuring	Distance of	Peck	Dominant	Air over-
		detonated in round [Kg]	weight per delay [Kg]	2	point from blasting face	velocity (PPV)	fre	
ŀ	15 No. Goyal	165	11	➤ Back Side From Blast Face	50	22.7	79.6	130 [(T) SD]
	Face		(2×5.5)	➢ Back Side From Blast Face	100	5.54		100
			110	➤ Back Side From Blast Face	150	2.35		122.3
>				➢ Back Side From Blast Face	200	1.88		101 5
2.	7050 RIL	1037	19	➢ Back Side From Blast Face	50	18.7		121.2
	Face		(2×30.5)	Back Side From Blast Face	100	13.9		123.3
				➢ Back Side From Blast Face	125	10.0		121.2
				➢ Back Side From Blast Face	150	4.95		122.9
د	101 0 .			Back Side From Blast Face	200	4.33		121.3
з.	For For	440	22	➢ Back Side From Blast Face	50	21.0		136.1
	rcae			Back Side From Blast Face	100	6.75		119.8
				Back Side From Blast Face	150	3.88		118.8
				Back Side From Blast Face	200	2.63		112.6
2	14 Nia nnt	20		Back Side From Blast Face	250	2.40		116.9
÷	10 NO. NEL	UC	30	Back Side From Blast Face	50	33.9		127.8
л	IS NO DRI	010	1	Back Side From Blast Face	100	22.1		125.8
Ļ.	10 NO. NEL	068	00	Back Side From Blast Face	50	22.1		125.8
	SILC		(2×25)	Back Side From Blast Face	100	7.78		122.9
				Back Side From Blast Face	150	3.49		115.7
~		- 110	l	Back Side From Blast Face	200	2.55		115.9
о.	20 NO. FIT	16/0	75	➢ Back Side From Blast Face	50	30.4		131.5
			(3×25)	Back Side From Blast Face	100	27.1		122.2
				> Back Side From Blast Face	150	25.6		122.6
				Back Side From Blast Face	200	5.24		1101

Table A2. Blast induced vibration monitored at different location in and around Prism Cement Limestone mine, Prism Cement Limited, (M.P.)

			1	11				12.	5				11.	-	10.	10			9.	>				0.	0				1.
		T acc	Eaco	15 No Count				13 NO. KPL	ICNI DAY			Face	10 NO. GOYAI	race	10 NO. GOYAI	ISNE CLI		Face	15 No. Goyal				Sile	13 NO. KPL				HINAUU	New Pit 01.
			/10	710				26/8	2				603	>>>	113				440					1405					420
		(C7×7)	00	5			(3×31.6)	20 20				(2×22)	44		21	2			20				(2×35)	70					30
➤ Kight Side From Blast Face	➤ Kight Side From Blast Face	> Lett Side From Blast Face	> Left Side From Blast Face	Back Side From Blast Face	Back Side From Blast Face	> Back Side From Blast Face	Structure height (roof-3m)	> House of Sri Umesh Prasad	Back Side From Blast Face	Left Side From Blast Face	Back Side From Blast Face	Right Side From Blast Face	Back Side From Blast Face	Back Side From Blast Face	Right Side From Blast Face	Back Side From Blast Face	➤ Back Side From Blast Face	Left Side From Blast Face	Back Side From Blast Face	Back Side From Blast Face	Left Side From Blast Face	(village Shankarji temple)	➤ Left Side From Blast Face	➤ Left Side From Blast Face	➢ Back Side From Blast Face	Left Side From Blast Face			
140	110	100	50	250	200	150	100	50	200	150	150	100	50	200	150	200	150	100	100	150	100	100	60	50	200		100	75	50
3.59	3.84	6.66	31.0	4.56	5.03	10.7	16.3	17.0	5.65	15.1	6.35	8.10	17.1	1.08	2.83	4.07	5.62	6.14	12.5	6.89	8.77	11.3	17.5	24.4	5.29		5.24	10.7	20.4
27.1	27.5	15	32	18.6	18.0	129	58.5	129	17.5	21.3	16.8	18	24.5	28.8	24.6	11.4	36.8	35.6	27.4	15.9	17.8	15.9	30.4	52.9	18.5		22	18.5	22.5
123.6	126.8	123.9	130.1	123.5	123.1	121.8	121.9	131	126.5		128.9	130.6	131.4	110.2	125	116.3	120	133.4	122.3	128	123.9	127.8	128.8	127.8	122.6		134.8	132.5	135.1

į	15			14.
Face	15 No Goual		I ALC	ID INO. GOYAL
C711	1175			58.38
(3×25)	70			2.78
 Kight Side From Blast Face Right Side From Blast Face Right Side From Blast Face 			Back Side From Blast Face	Back Side From Blast Face
100 11.6 120 11.0 130 9.0			100 2.7	
6 34.8 0 69.1) 22.8		<i>a</i> -	_	50
137.8 132.7 132.2	116	119	110	12

Table A3. Recommended explosives weight per delay to be detonated in a blasting round for the safety of houses/structures taking 10 mm/s (for the houses/structures not belonging to the Owner) and 15 mm/s (for the houses/structures belonging to the Owner) as safe limit of peak particle velocity for Prism Cement Limestone mine, Prism Cement Limited, Satna, (M. P).

Distance of structures from the blast face [m]	detonated	sive weight to be in a delay g]
	10 mm/s	15 mm/s
50	12	19
75	27	42
100	49	75
125	76	118
150	110	170
175	149	231
200	195	302
225	247	382
250	305	471
275	369	570
300	439	678

Table A4. Predicted peak particle velocity level at various distance due to detonation of explosive weight per delay of 10, 20, 30 & 50 kg at Prism Cement Limestone mine, Prism Cement Limited, Satna, (M.P).

Distance of structures from the blast face [m]	Predicted peak particle velocity levels [mm/s]			
	10 kg	20 kg	30 kg	50 kg
50	9.9	13.2	16.6	22.1
75	6.3	8.4	10.5	14.0
100	4.6	6.1	7.6	10.1
125	3.5	4.7	5.9	7.9
150	2.9	3.8	4.8	6.4
175	2.4	3.2	4.1	5.4
200	2.1	2.8	3.5	4.6
225	1.8	2.4	3.1	4.1
250	1.6	2.2	2.7	3.6
275	1.5	1.9	2.4	3.2
300	1.3	1.8	2.2	2.9

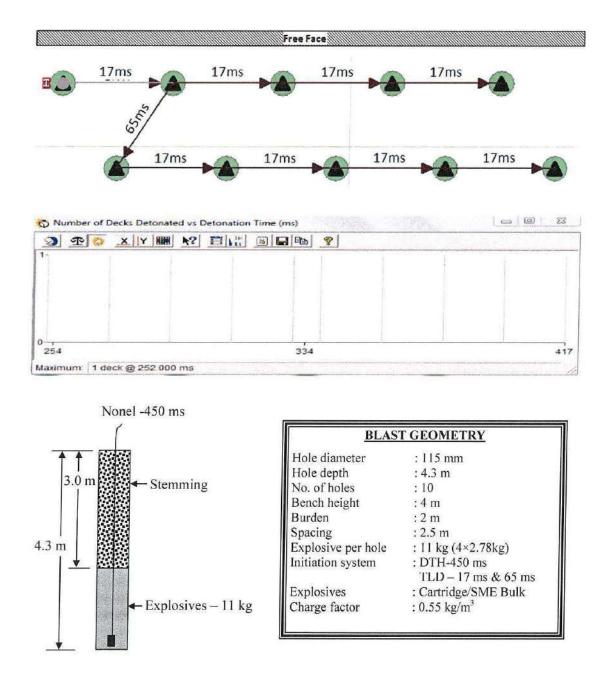
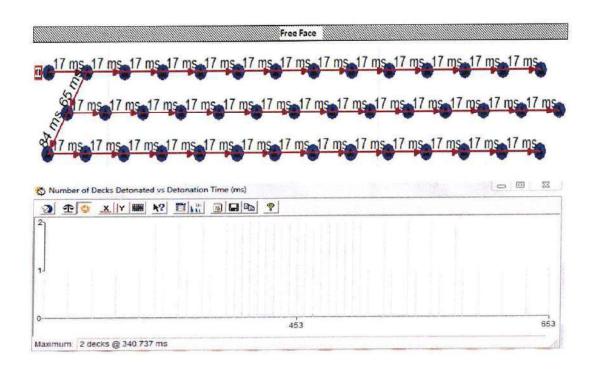
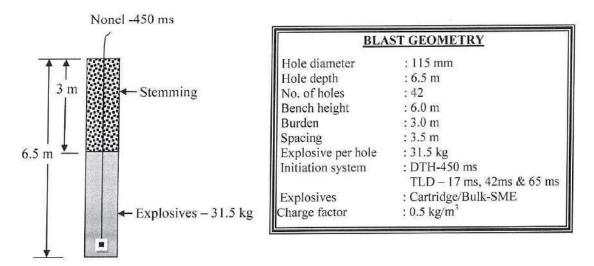
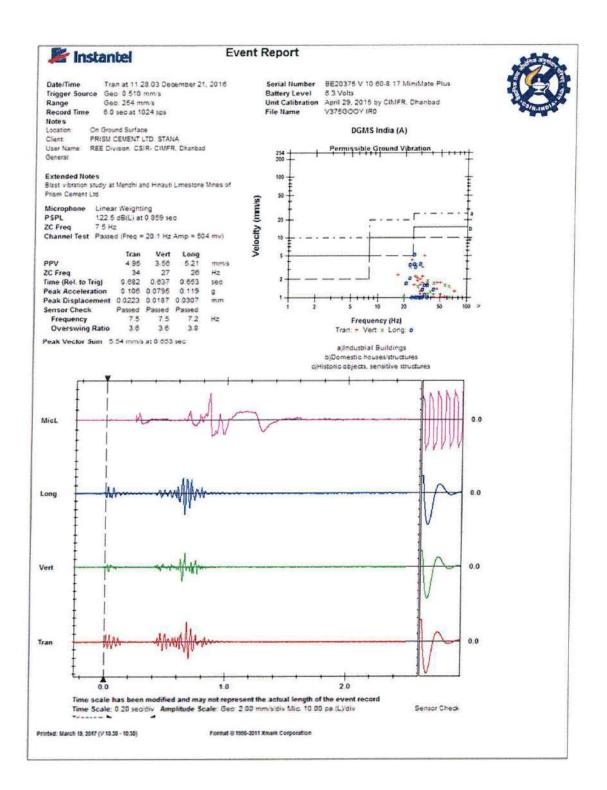
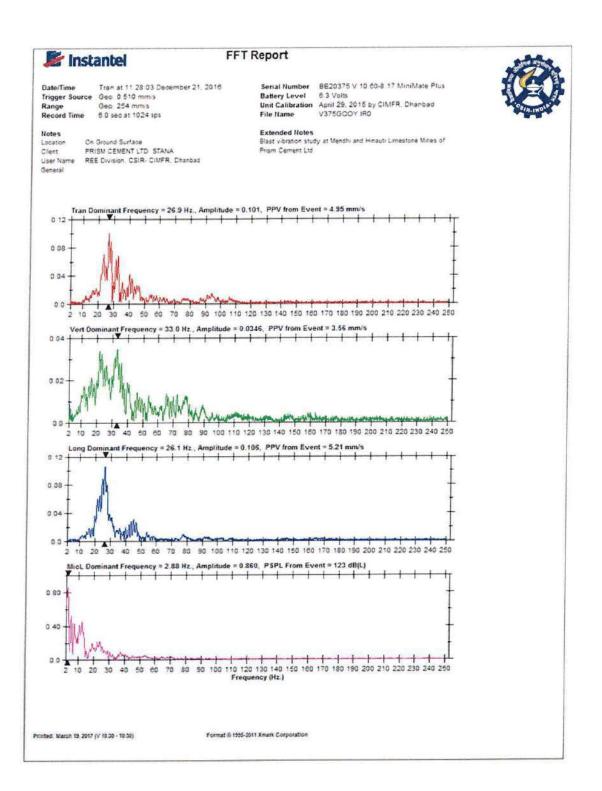
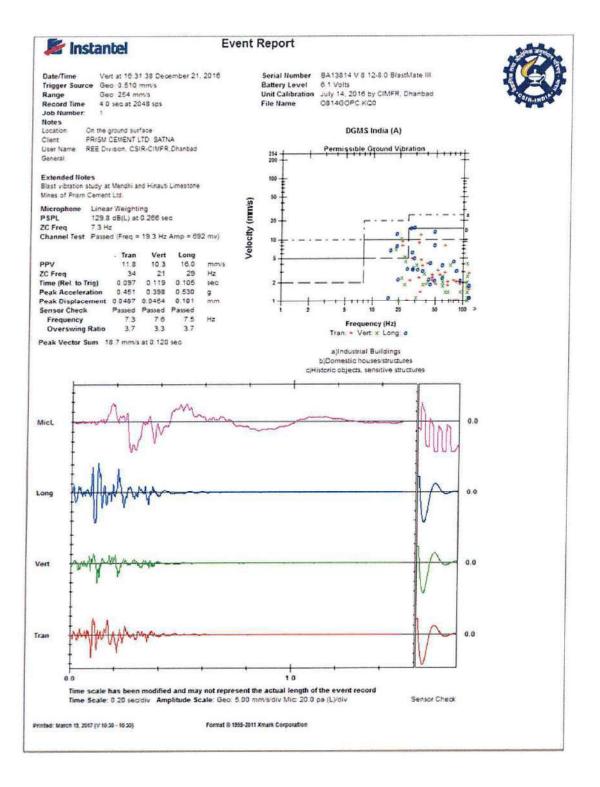
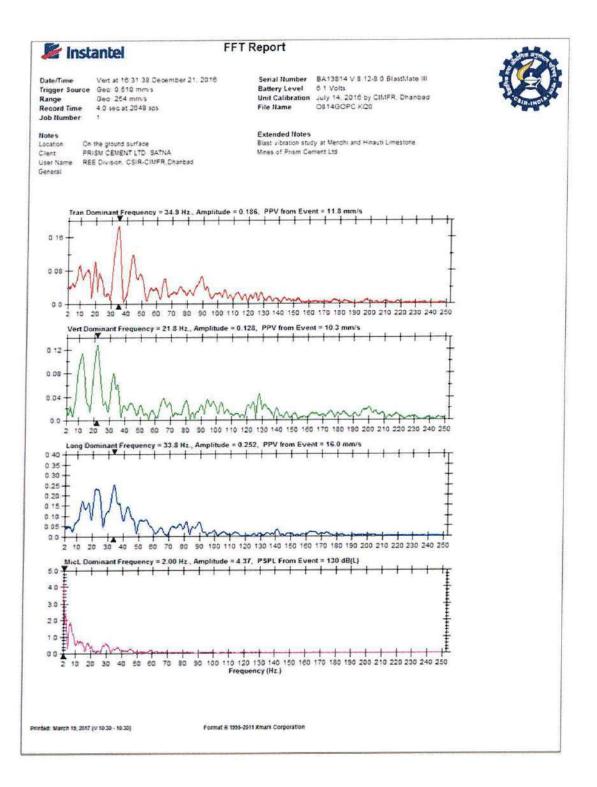
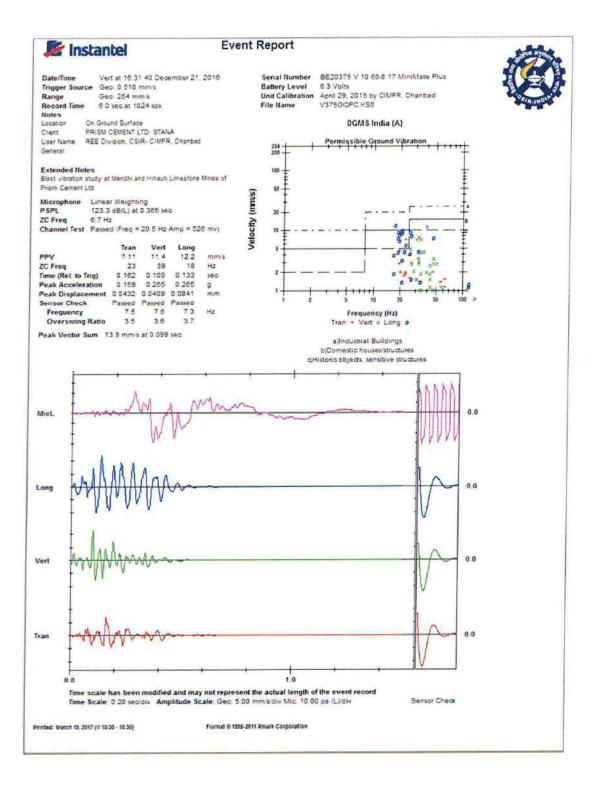
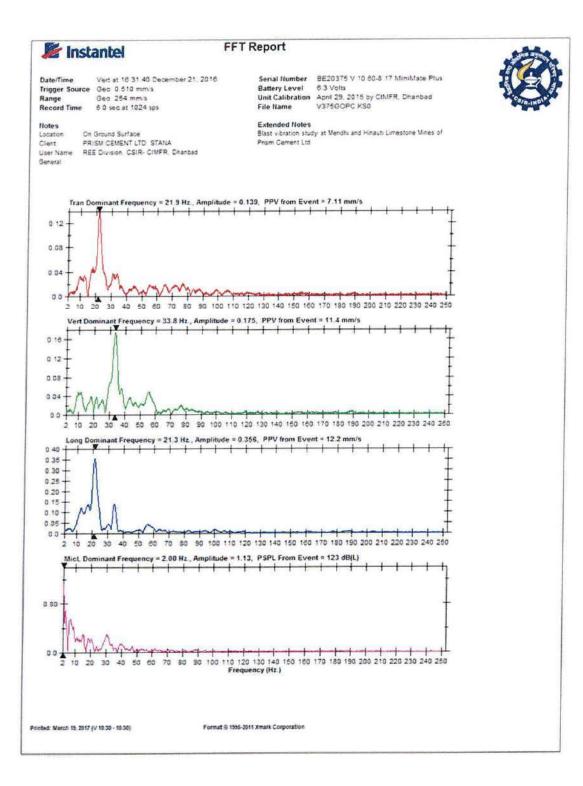
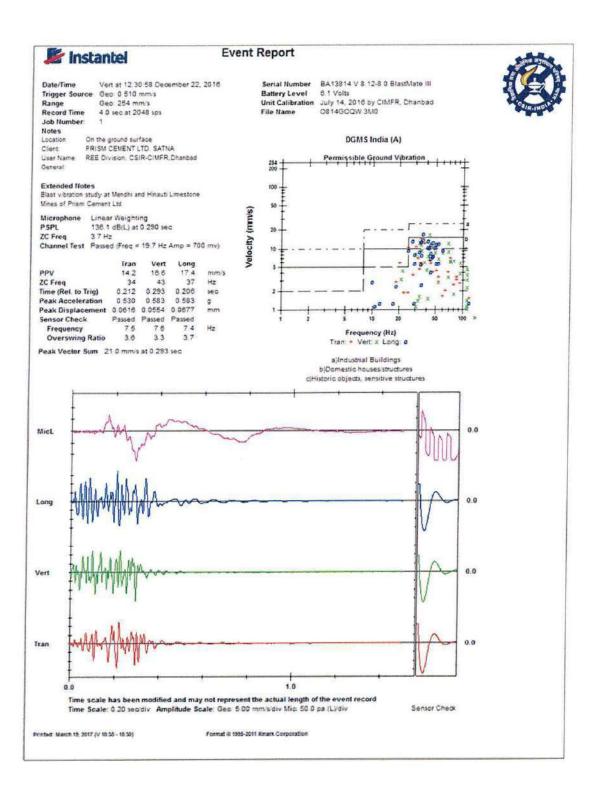



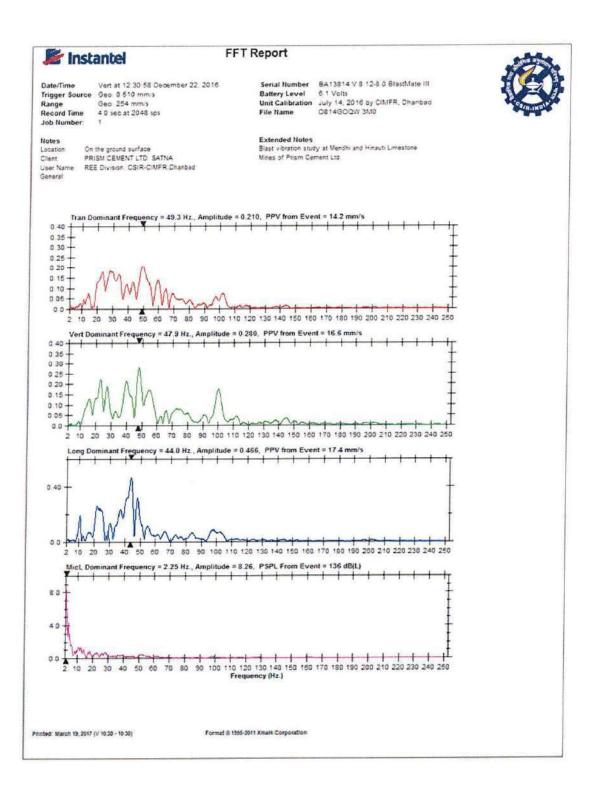
Figure A1. Recommended blast design and charging pattern of holes for 4 m benches of Prism Cement Limestone mine when blasting is to be conducted at or beyond 50m.

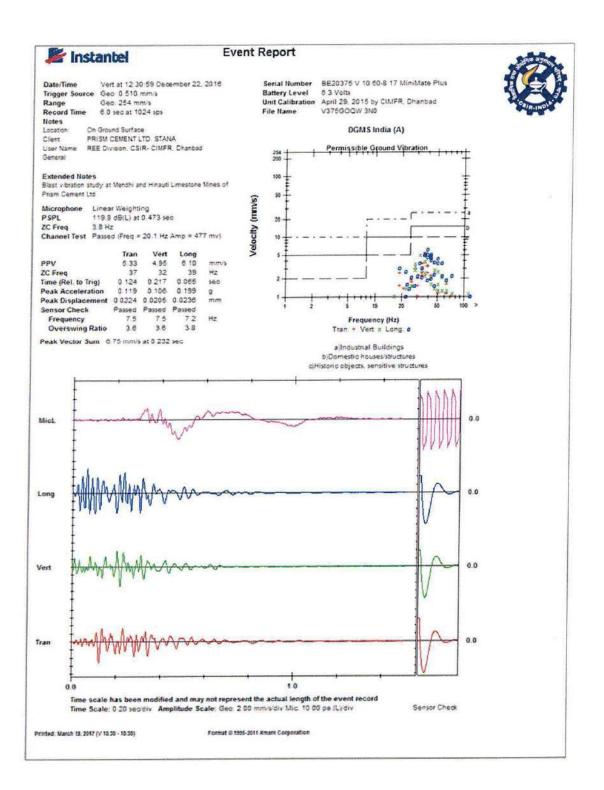






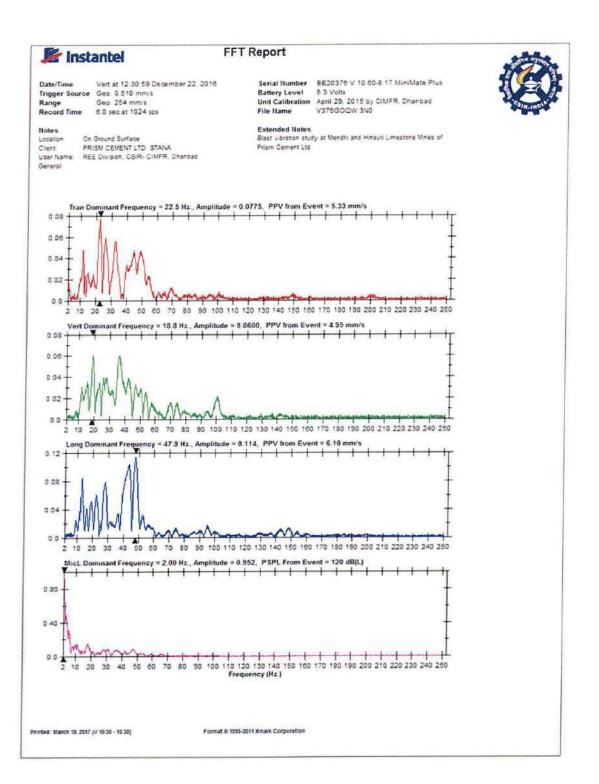

Figure A2. Recommended blast design and charging pattern of holes for 6.0 m benches of Prism Cement Limestone mine when blasting is to be conducted at or beyond 100 m.

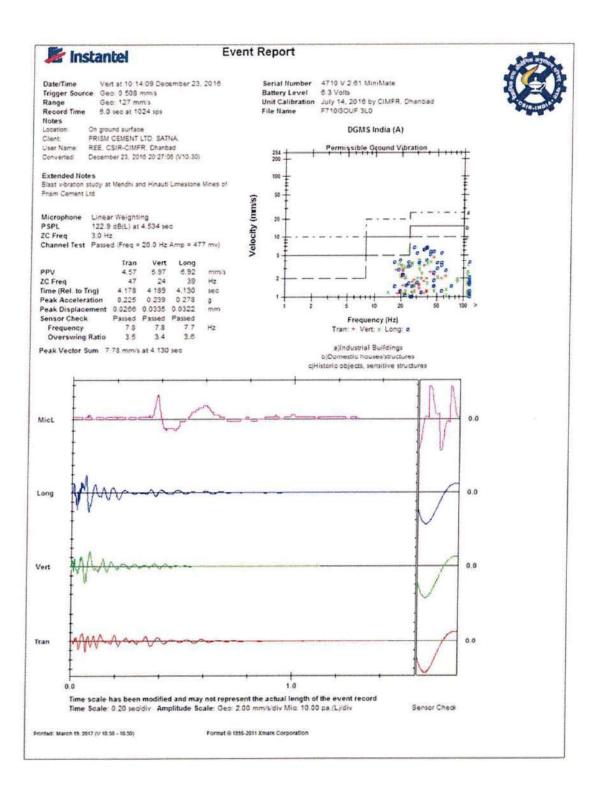


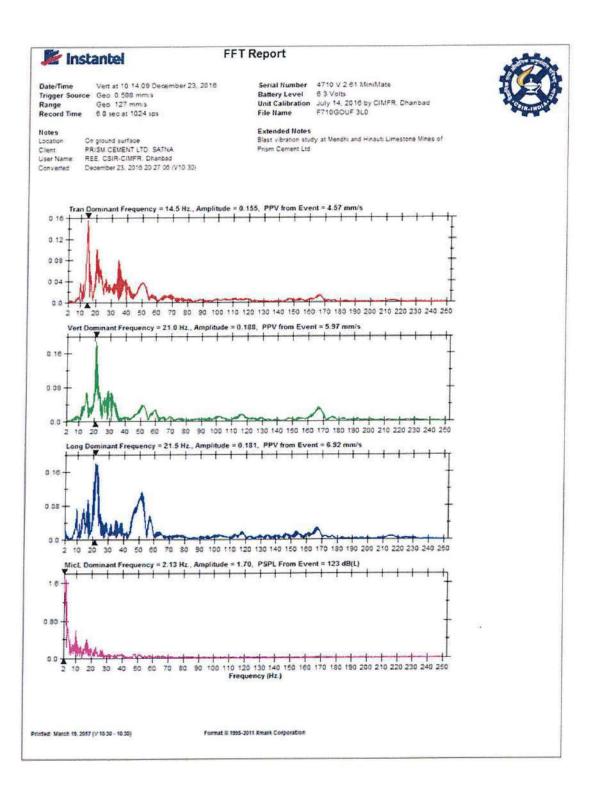


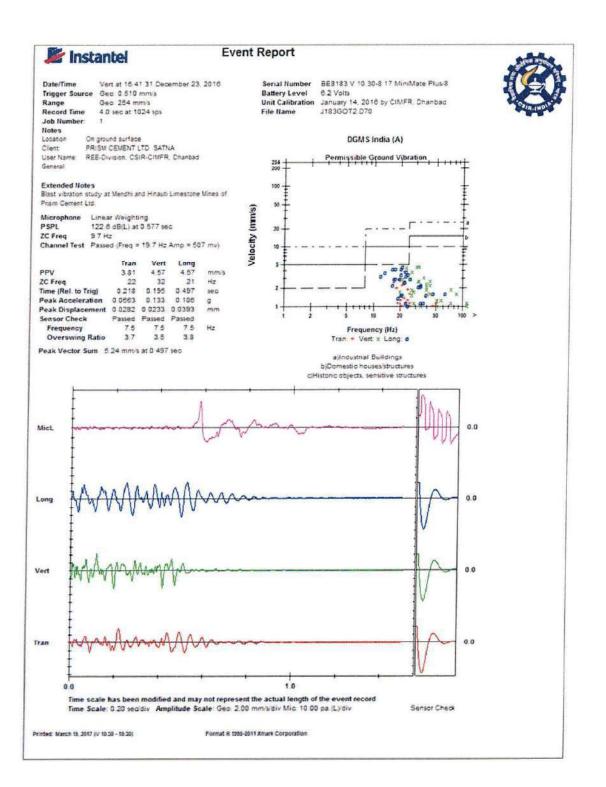


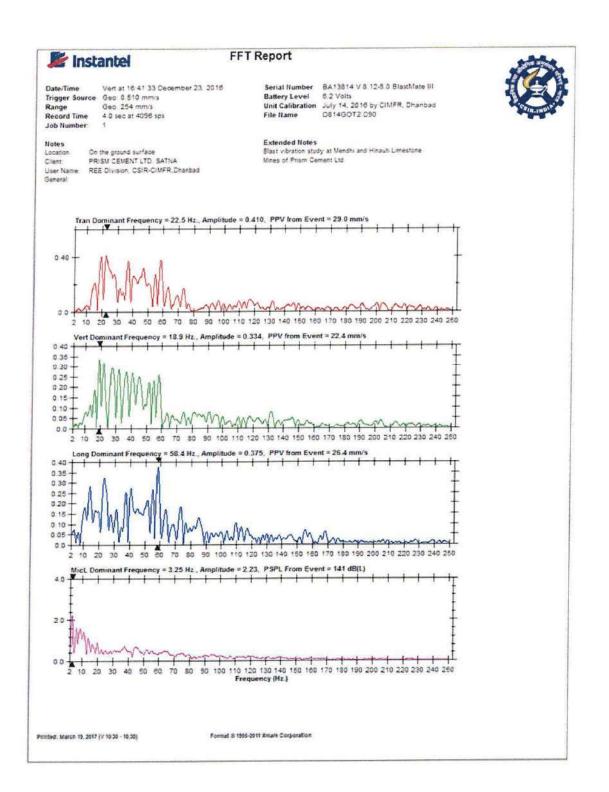


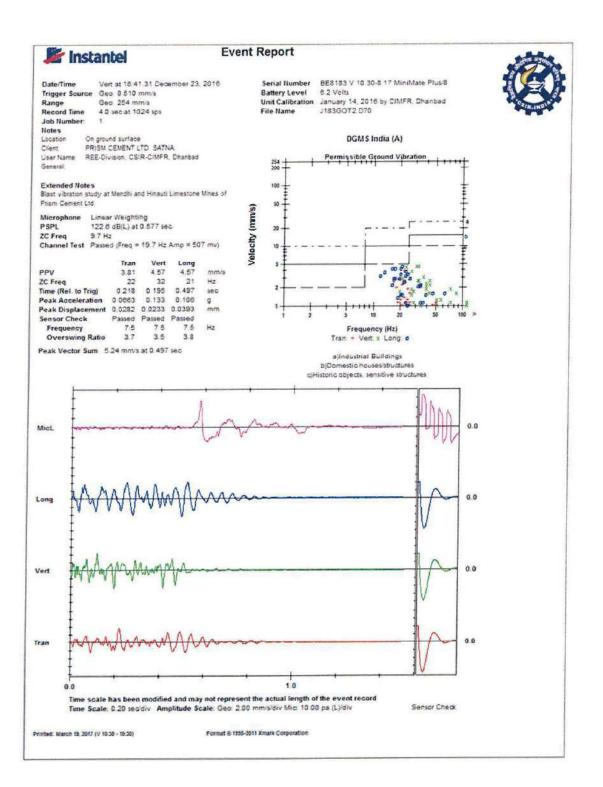


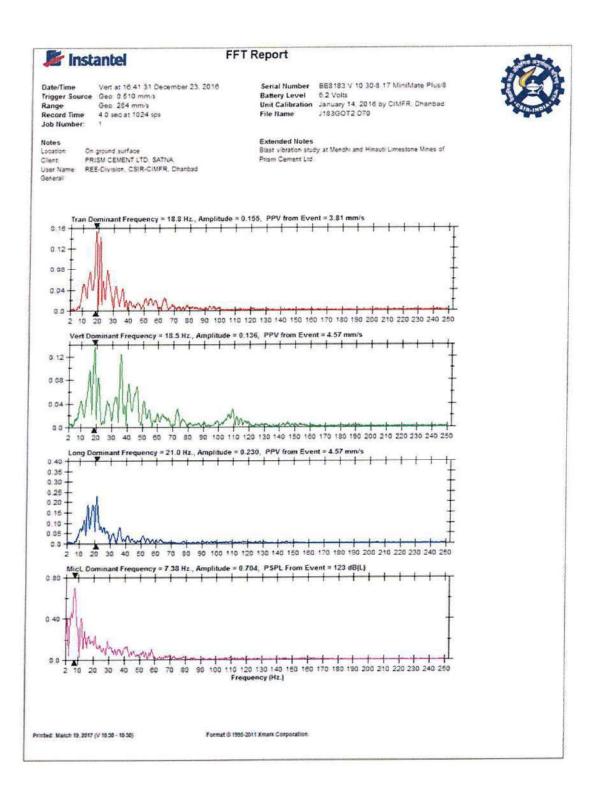


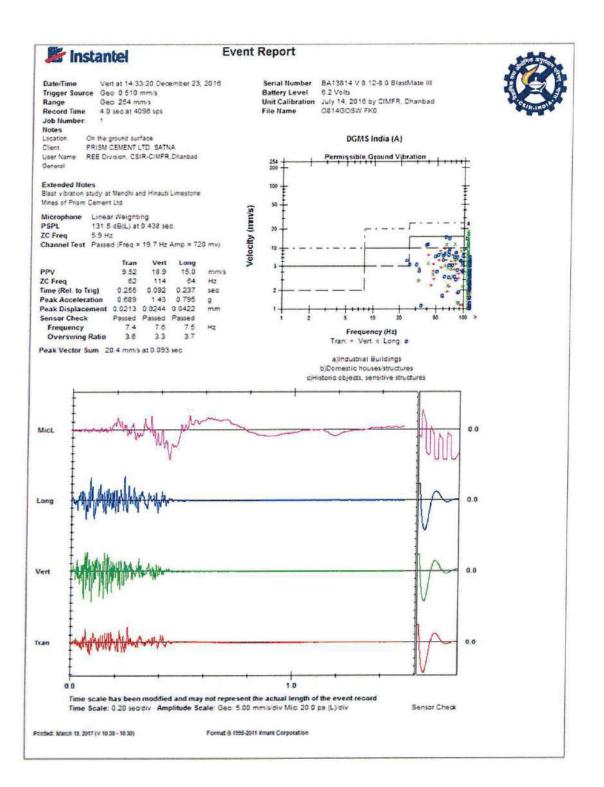


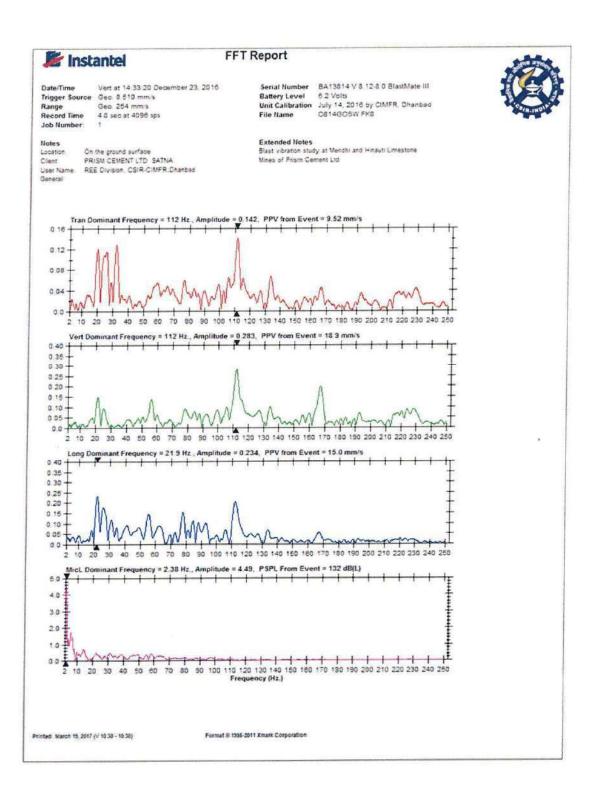


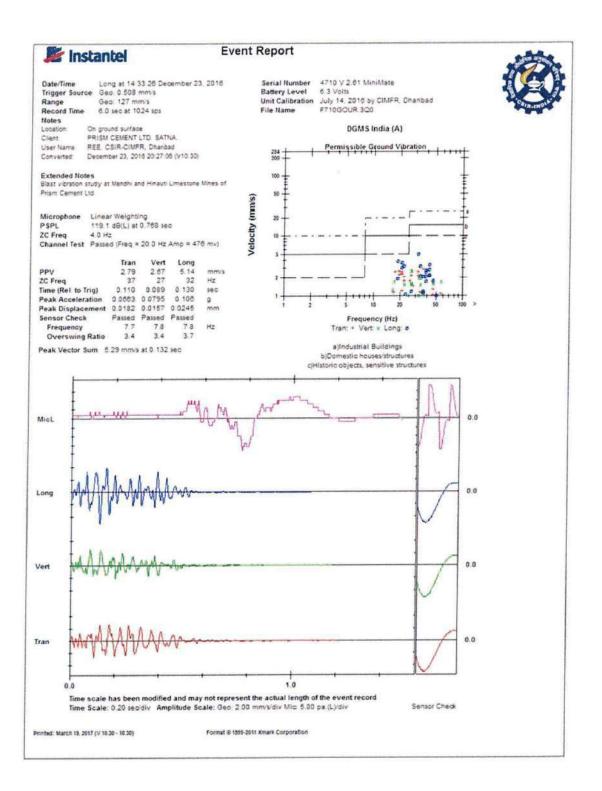


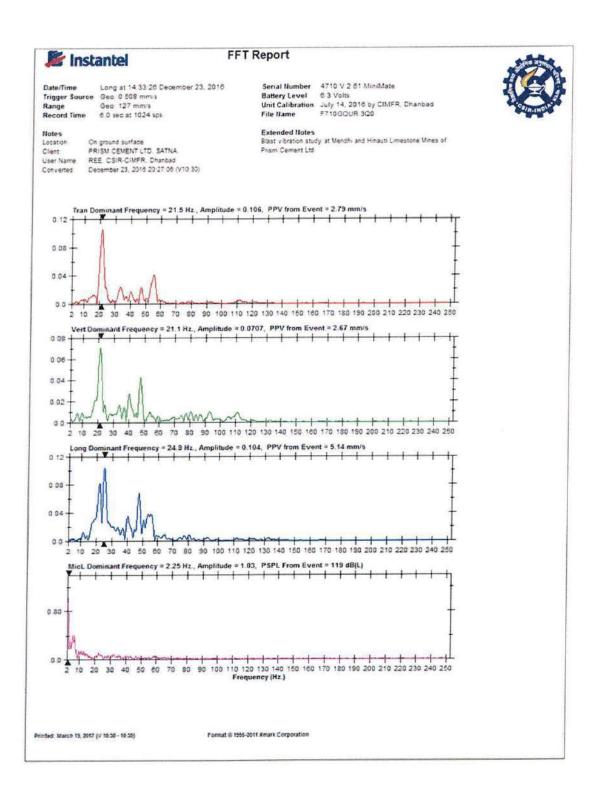


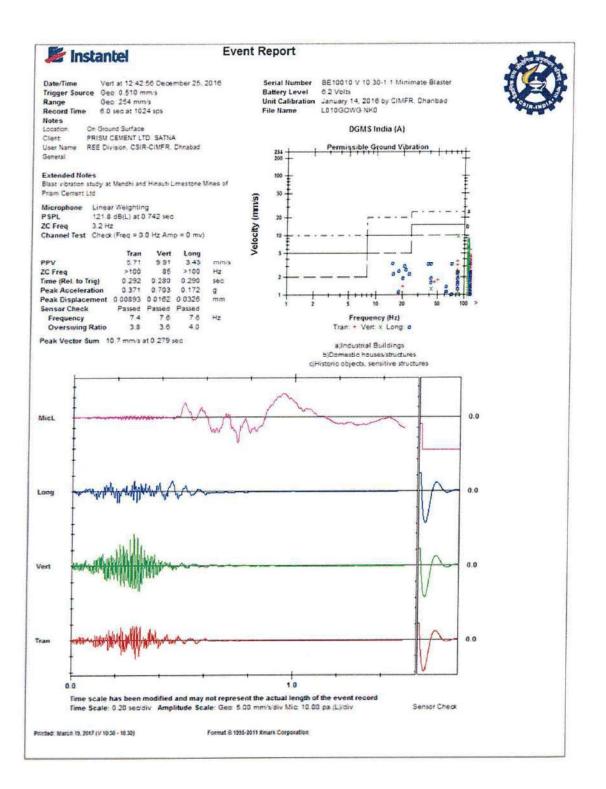


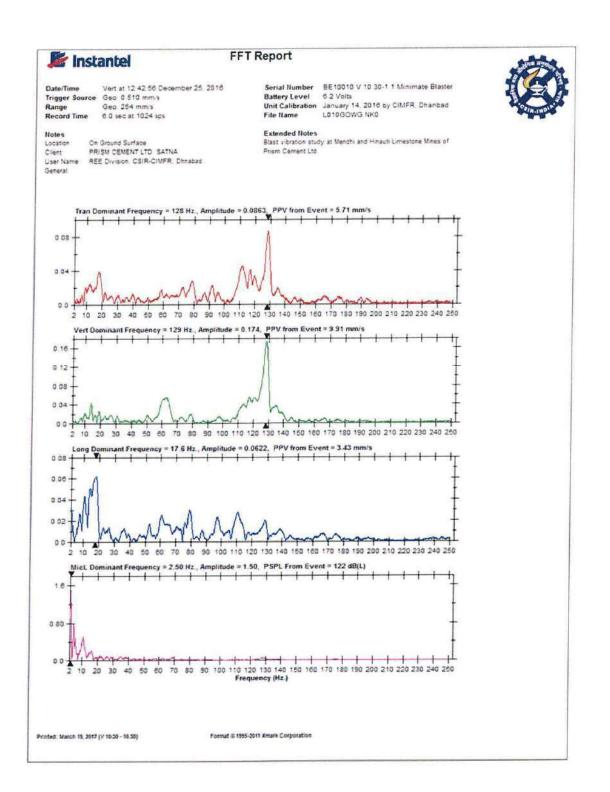


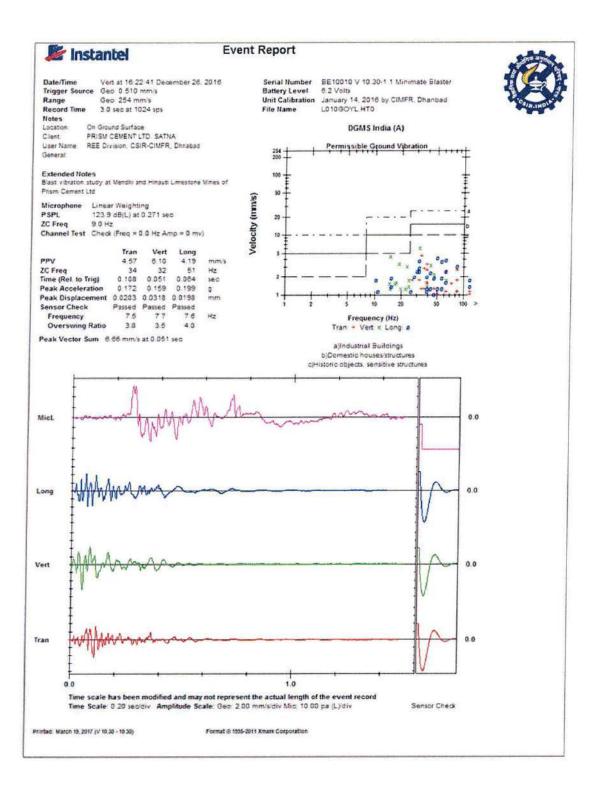


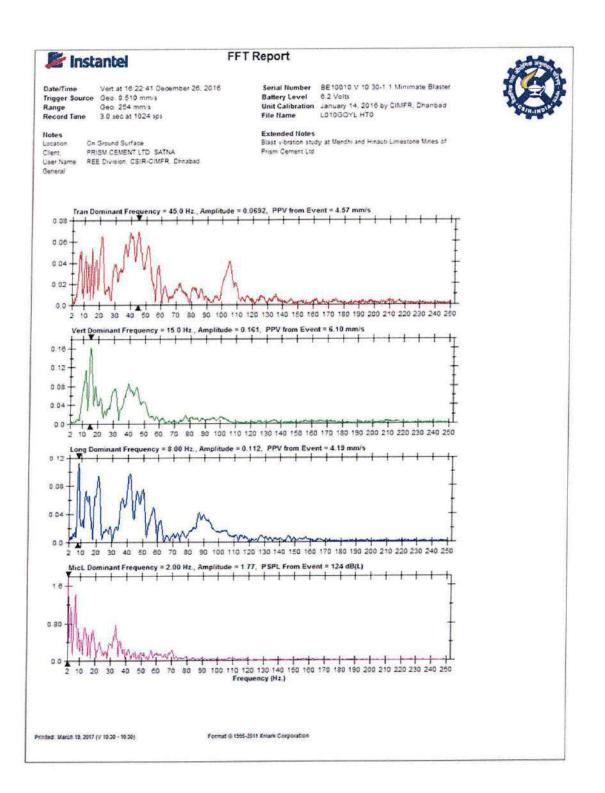


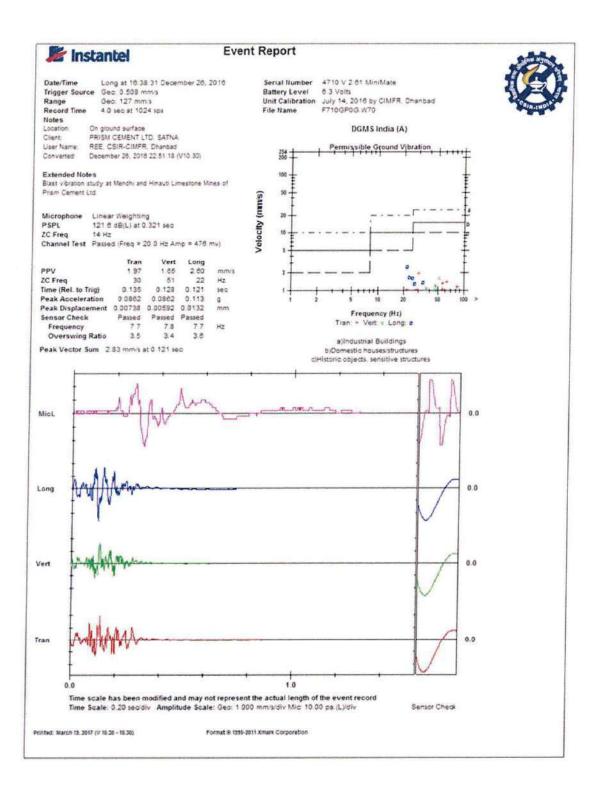


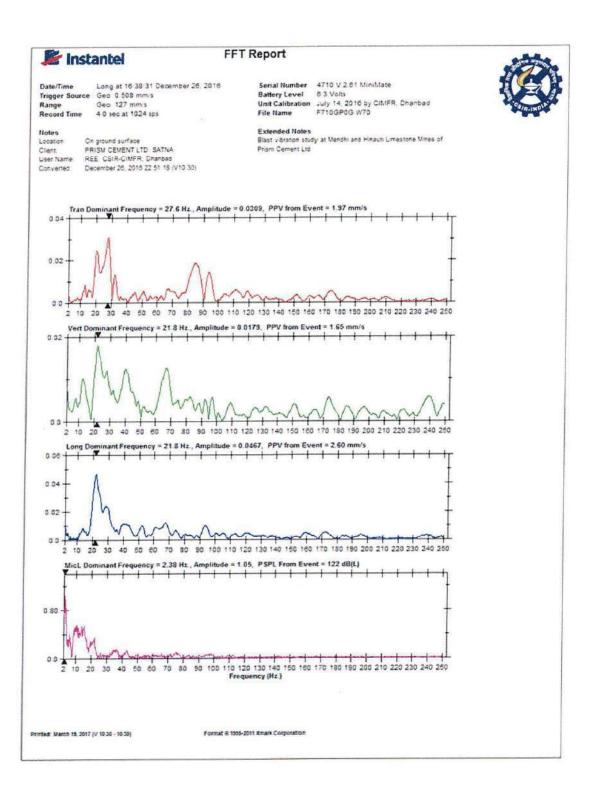


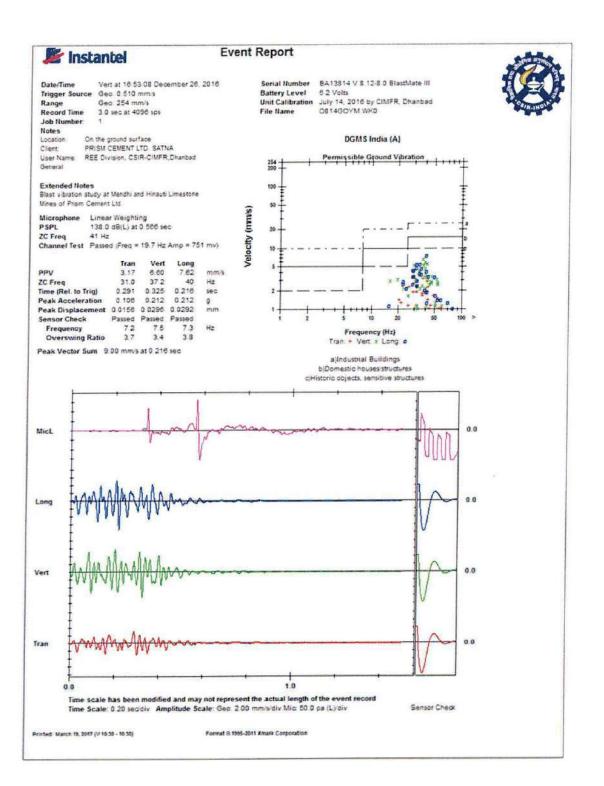


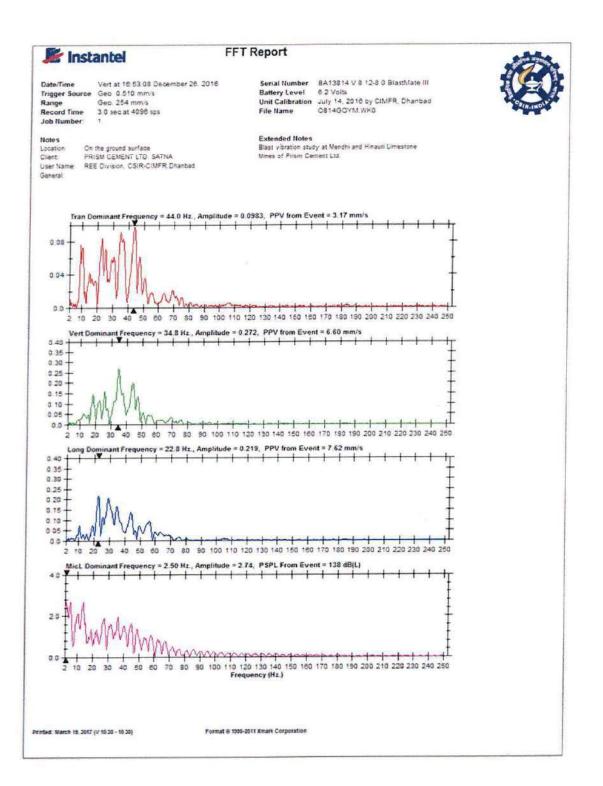












ANNEXURE - 9

MIN/0701/990628 03.02.2000

The Joint Director(S) Ministry Of Environment & Forests (MOEF), Regional Office, Western Region E-3/240 Arera Colony, Bhopal-462016(M.P)

Dear Sir,

Sub: Compliance Report - Sijhata-Hinouti-Limestone Mine of M/s. Prism Cement Ltd.

Ref: Letter - No. 11015/37/96/1A II(M) dated 20/12/99 of MOEF, New Delhi Your office letter no. 3-1/97(Env)/1359 dated 5/7/99.

We kindly acknowledge the above mentioned letters. We regret very much for not sending the compliance reports in time. We assure you, sir, we will be sending the same in time in future.

We hereby mention our clarifications pointiwise as raised by you:

The garland drains have been done all around the dumping sites, which restrict erosion the settling of silt around the faces.

a) Monitoring of Quality of Effluent:

In mines there is no generation of any effluent water. However the Sewage Water generated from the residential colony (combined for plant & mines) is being treated in colony premises and is being monitored regularly as per guidelines of MPPCB.

The rainwater accumulated in the lower benches of the working areas, is being pumped out and carried through pipeline to the reservoirs (settling tanks). The reservoir is in two blocks having cumulative water holding capacities of about 1.5 lakhs cub. mtrs. We find water in the reservoir till end of January or max 2nd week of February.

This water is being used sometimes for plantation and dust suppression on the hauling roads.

(b) Monitoring of RPM:

The monitoring of RPM is presently is not being monitored, as there is no norms mentioned in the MPPCB consent letter. At present we are regularly monitoring SPM, SO_2 , NOx in Mines. RPM is not being monitored as on date. "If you feel it is required we will arrange to carry out the same. We request for your guidelines for RPM monitoring.

....2/-

c) Submission of Analysis Report in respect of Noise pollution:

We have submitted a copy of the comprehensive, EIA and EMP (Post commissioning) for the area, vide our letter no. MIN0703/990369 dated 15/9/99, in person, which is duly acknowledged by your Regional Office, Bhopal on 16/9/99.

However, we are furnishing copies of the same for your ready reference and records.

d) Submission of analysis - report on the monitoring data:

e)

We are furnishing here with the monthly Ambient Air Quality Monitoring reports till date.

Construction of settling tanks and toe-drains leading to it for arresting siltation of surface water.

We do not have an open drainage system. The pumped out water is being carried through pipelines and released in the reservoir. The reservoirs consist of two blocks of a cumulative water holding capacity of 1.5 lakhs cub. Mtrs. The water is not discharged from reservoir. Hence all the silt will be deposited within the reservoir.

f) Submission of annual action plan for socio economic development:

We are herewith furnishing a note on the various social (welfare) economic measures carried out by Prism cement. We have enclosed herewith the Socio Economic Action Plan for your kind perusal.

g) Establishment of Environment Management Cell:

We have already established Environmental Management Cell, members of which are as below :

Mr. M.P. Rai	<u></u>	Vice President (Works)
Mr. U.K. Das	-	Sr. Jt. General Manager (Mines)
Mr. A.K. Shrivastava	-	Asst. Gen. Manager
Mr. V.V. Kulkarni	-	Manager (Geology).
Mr. D.K. Singh	-	Asst. Manager (Pollution Control)
Mr. S.P. Singh	-	Horticulturist.

...3/-

:: 2 ::

h) Regular submission of reports for every 6 months about environmental compliance to Regional office:

We regret for not sending regularly the reports as mentioned above. The same will be complied in future.

:: 3 ::

Hope all these points are in order and we assure you that to the best of our efforts, we shall continue to comply with various provisions of the Act.

Thanking you,

Yours faithfully, For PRISM CEMENT LIMITED 00 eres. U.K. DAS

Sr. Jt. General Manager (Mines)

Encl: as above.

CC: Additional Director, MOEF – For necessary information and records. CGO Complex, Lodhi Road New Delhi – 110 003

PS: We have complied all the points referred in your letter dated 20.12.99 and sent all the relevant details to Regional office, Bhopal

03.02.2000

SOCIO- ECONOMIC DEVELOPMENT ACTION PLAN (WORKSHEET)

S.No	Particular	Details	Ame	ount
1.	Village road repair – leading Eastern Block		Rs	. 200
2.	Soil filling and levelling at Sijhata school (29.1.99)	150 soil trips x 3 = 450 cu. Mtr x Rs.45	Rs.	20250
3.	Soil filling at Hinouti Mandir 24.3.99	50 trips = 50 x 3 = 150 cu.mtr. x Rs.45	Rs.	6750
4.	Soil filling at Sijahata village – Road side (3/3/999)	50 trips = 50 x 3 =150 cu.mtr. x Rs. 45	Rs.	6750
5.	Soil filling at Ramvan for Basanth Panchami (Jan- 2000)	50 trips =50x3 = 150 cu. Mtr x Rs. 45	Rs.	6750
б.	Hinouti village road bridge,near village for water management (culvert built)		Rs.	25000
7.	Village road leading to Pithepur (Magazine) (99-2000)		Rs.	150000
8.	Soil supplied to Rampur – (Police Station)			
9.	Jailor Rampur			
10.	Hinouti Road – From Baghicha to Hinouti village	Rs. 80000 labour wages + Rs. 100000 material cost.	Rs.	180000
11.	Drains in village for proper water management in the Patel Tola of Hinouti village habitation.		Rs.	50000
12.	Other roads leading to Hinouti village	250 labour x Rs. 70 = 17500 + 2000 trips material x 3 = 6000 cu.mtr = Rs. 270000	Rs.	287500
3.	1300- 1400 trips of soil will be given to the villagers during 2000-2001	1350 x 3 = 4050 cu.mtr. x Rs. 45	Rs.	200000
	Medical facilities		· · · <u>-</u>	
	250 patients x Rs. 7 x Rs. 12		Rs.	21000
	Mobile clinic treatment in villages @ Rs. 60/- per patient (inclusive of van charges)	15000 x 12	Rs.	180000

ANA SALANCE TO SALANCE

Annexure -3

SI.No	Particulars	Incurred
		2000-2001
1	General Development of Villages -	200000
	for 4 villages namely Hinouti, Sijhata,	
	Mankahari & Bamhori @ Rs. 50000/- each	-
	per annum to vill. Panchayats	1
.2	Welfare to needy villagers - exgratia	300000
3	Repairs incurred on village roads within	320000
	5 km range villages viz. Hinouti,Sijhata,	
	mankahari,Bamhouri,Rampur etc.	
4	Soil filling & levelling the school and	· · ·
	panchayat buildings areas & playground.	
	Sijahata School area and approach road	241989
	in Hinouti village, Mankahari village, Ramvan, etc.	
5	Medical facilities:	
	(i) Patients being treated at medical centre	
	on an average about 250/ month or 1500/ annum.	696000
	(ii)Patients being treated at villages through mobile	21000
	clinic on an average about 21 per day	
6	Contribution to sports activities	15000
	Total Rs.In Lakhs	1793989_ 17.93

THOM DE AN

Prism cement is giving preference to the local villagers and land sellers suitable employment based on their qualification and capabilities.

In addition to the employment, indirect employment is also generated/ provided, like deploying trucks, tippers, oil tankers, compressors etc. purchased by local villagers have been hired for Internal transportation of materials.

Also employment is provided for the development of horticulature and green belt.

No. of persons employed (workers category) during 1998-99 - 592. (Including plant)

U.K.Das

Same.

Gen.Manager (Mines)

FORMAT NO. ECO/QS/FORMAT/07 TEST REPORT NO:ECO LAB/WW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF WASTE WATER*

Name of the Company Address of the Company	 M/s. Prism Johnson Ltd. Village Mankahari, Tehsil Rampur Baghelan Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: STP Inlet
Sample ID Code	: ELW-12577

SI. No.	TESTS	PROTOCOL	RESULT	Limits of Detection
1	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	6.82	2-12
2	Total Suspended Solids(mg/l)	APHA, 23 rd Ed. 2017, 2540-D	153.2	5.0-1000
3	Oil & Grease as O & G (mg/l)	APHA, 23 rd Ed. 2017, 5520 A+B+D	BDL	5.0-600
4	Biochemical Oxygen Demand as BOD (mg/l) 3days at 27 ⁰ C	APHA, 23 rd Ed. 2017, 5210 A+B	40.0	5-10000
5	Chemical Oxygen Demand as COD (mg/l)	APHA, 23 rd Ed. 2017, 5220 A+C	152.0	5-50000

*The result are related only to item tested. BDL = Below Detection Limit

Analyst

Signatory Authorized

Ecomen Laboratories Pvt. Ltd. Hut No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

FORMAT NO. ECO/QS/FORMAT/07 TEST REPORT NO:ECO LAB/WW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF WASTE WATER*

Name of the Company Address of the Company	 : M/s. Prism Johnson Ltd. : Village Mankahari, Tehsil Rampur Baghelan Distt.Satna (M.P.) 			
Sampling Method	: APHA/ IS: 3025			
Sample Collected by	: Mr.Maan Singh			
Sample Quantity : As per requirement.				
Date of Sampling : 12.11.2020				
Date of Receiving	iving : 15.11.2020			
Date of Analysis : 15.11.2020 to 25.11.202				
Source of Sample	: STP Outlet			
Sample ID Code	: ELW-12578			

Sl. No.	TESTS	PROTOCOL	RESULT	Limits of Detection	G.S.R 1265 (E)
1	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	6.92	2-12	6.5-9.0
2	Total Suspended Solids (mg/l)	APHA, 23 rd Ed. 2017, 2540-D	18.0	5.0-1000	<100.0
3	Oil & Grease as O & G (mg/l)	APHA, 23 rd Ed. 2017, 5520 A+B+D	BDL	5.0-600	-
4	Biochemical Oxygen Demand as BOD (mg/l) 3days at 27 ⁰ C	APHA, 23 rd Ed. 2017, 5210 A+B	6.5	5-10000	30.0
5	Chemical Oxygen Demand as COD (mg/l)	APHA, 23 rd Ed. 2017, 5220 A+C	34.0	5-50000	-
6.	Fecal Coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 A + E	166.0	-	<1000

*The result are related only to item tested. BDL = Below Detection Limit

Т

Authorized Signatory

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj, Lucknow-226024 Ph.2746282 Fax-2745726

lanager (Q) ...

FORMAT NO. ECO/QS/FORMAT/07

TEST REPORT NO:ECO LAB/WW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

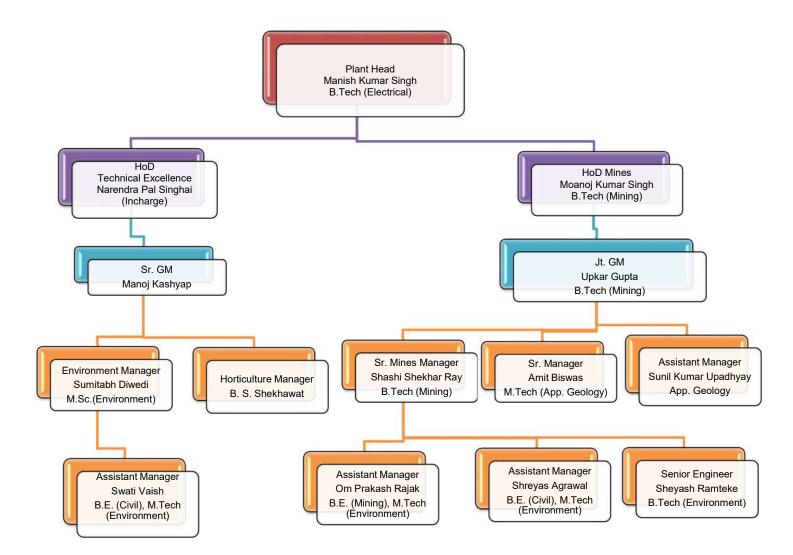
TEST REPORT OF WASTE WATER*

Name of the Con	npany	: M/s. Prism Joh	nson Ltd.		
Address of the C	ompany	: Village Manka	,		
		Tehsil Rampur	Baghelan		
		Distt.Satna (M.	P.)		
Sampling Meth	od	: APHA/ IS: 30	25		
Sample Collecte	ed by	: Mr.Maan Singl	L		
Sample Quantit	ty	: As per require	ement.		
Date of Sampling	5	: 12.11.2020			
Date of Receiving	g	: 15.11.2020			
Date of Analysis		: 15.11.2020 to 2	5.11.2020		
Source of Samp	le	: Mine Worksh	op after sepa	rate Treated	Water
Sample ID Cod	e	: ELW-12579			

SI. No.	TESTS	PROTOCOL	RESULT	Limits of Detection	G.S.R 1265 (E)
1	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.45	2-12	6.5-9.0
2	Total Suspended Solid as TSS (mg/l)	APHA, 23 rd Ed. 2017, 2540-D	22.0	5.0-1000	<100.0
3	Oil & Grease as O & G (mg/l)	APHA, 23 rd Ed. 2017, 5520 A+B+D	BDL	5.0-600	-
4	Biochemical Oxygen Demand as BOD (mg/l) 3days at 27 ⁰ C	APHA, 23 rd Ed. 2017, 5210 A+B	8.0	5-10000	30.0
5	Chemical Oxygen Demand as COD (mg/l)	APHA, 23 rd Ed. 2017, 5220 A+C	54.0	5-50000	-
6.	Fecal Coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017,9221 A + E	Absent	-	<1000

*The result are related only to item tested. BDL = Below Detection Limit

Analyst


Г

Authorized Signatory

Ecomen Laboratories Pvt. Ltd. Hut No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

-1

٦

